
Advanced EncapsulationAdvanced Encapsulation
a panacea for reducing

the support burden?

Verisity US ClubV 2004

Dr Richard Vialls
Chief Technologist Verification

IntroductionIntroduction
Introduction of eRM has resulted in large
number of eVCs being developed:

In-house
Commercial off-the-shelf

Verification IP reuse means we have to
address the issue of support
Perhaps biggest current support issue is
how to minimise:

USER ERRORS

IntroductionIntroduction
We will cover:

What is a user error?
Why are user errors important?
Typical user errors
How to minimise user errors:

Now – encapsulation, other ‘tips and tricks’
The future – advanced encapsulation?

What is a What is a ‘‘user erroruser error’’??

eVCs are often complex products
User API is typically:

Large
Difficult to document

User is often:
Inexperienced?
New to Specman?
New to eVCs/eRM?

Result: User Errors!

What is a What is a ‘‘user erroruser error’’??

Takes user some time to gain a ‘feel’ for
an eVC
Learning curve typically involves refining
understanding of eVC structure
Even with the best documentation, user
may start with misconceptions

Initial misconceptions will be gross
Later misconceptions will be more subtle

Why are user errors important?Why are user errors important?

Most common during early ramp-up
Rates typically tail off during ramp-up
Assuming good product, more common than eVC
failures

High incidence of user errors during evaluation
periods!!!!!
Ease of use of eVC is largely measured by
frequency and severity of user errors
High impact on technology uptake!
Need to differentiate user errors from other errors

Typical user errorsTypical user errors

Illegal constraint of field – contradictions!
Illegal constraint of ‘read-only’ field
Illegal write to ‘read-only’ field
Illegal extension of method
Illegal call of method
Illegal modification of method parameter in
user extension
etc

Example: illegal constraint ofExample: illegal constraint of
‘‘readread--onlyonly’’ fieldfield

-- eVC Code
unit some_env_u {

num_squares : uint;

num_edges : uint;
keep num_edges == num_squares * 4;

};

-- User Code
extend some_env_u {
keep num_edges == 8;

};

The resultThe result……

*** Error: Contradiction:
A contradiction has occurred when generating some_env_u-@0.num_edges :

Previous constraints reduced its range of possible values,
then the following constraint contradicted these values:

keep num_edges == num_squares * 4; at line 9 in @test
Reduced: some_env_u-@0.num_edges into []

Using: some_env_u-@0.num_squares == [1077154777]
To see details, reload and rerun with "collect gen"

*** Error:

Solution 1: documentationSolution 1: documentation
Need to carefully document API so that user
understands correct usage. E.g.:

unit some_env_u {

-- This field controls the number of squares
-- in the environment. The user should constrain
-- this field.
num_squares : uint;

-- This field indicates the number of edges in the
-- environment. Its value is automatically constrained
-- by the eVC and should not be constrained by the user.
num_edges : uint;

keep num_edges == num_squares * 4;

};

Solution 1: documentationSolution 1: documentation

Documentation can be auto-extracted to
reference manual (using eDoc)
However…

Assumes user reads the manual!!!!!!
Good documentation is essential, but…
…good documentation doesn’t necessarily
prevent user errors
Hence the term – RTFM! Errors:

‘READ THE ******* MANUAL!’

The requirementThe requirement
Need automated (preferably load-time)
solution to inform user of API usage errors

Must make clear distinction between API
usage errors and other classes of error
Must give user sufficient info to debug
Should be easy/intuitive to code

Solution 2: encapsulationSolution 2: encapsulation
Simple encapsulation added to Specman
4.1
Provides ability to hide types and
struct/unit members
Three levels of encapsulation: protected,
package and private

‘‘protectedprotected’’ encapsulationencapsulation
Hides struct/unit members from code outside
struct/unit

unit my_agent_u {
a : uint;

protected b : uint;
};

extend sys {
agent : my_agent_u is instance;

keep a == 5; -- this is legal
keep b == 23; -- this is illegal

};

‘‘protectedprotected’’ encapsulationencapsulation
‘protected’ is extremely useful tool
Should be used to hide non-API
fields/methods/events/etc. within each
struct/unit
No good for struct members that are used
across struct/unit hierarchy

Need ‘package’ encapsulation

‘‘packagepackage’’ encapsulationencapsulation
Introduces concept of encapsulation
package

a group of files marked as belonging to same
package (not the same as eRM package)

Can be used on types and struct/unit
members
Hides declarations from code outside
package

‘‘packagepackage’’ encapsulationencapsulation
-- eVC file
package my_evc;

package type my_enum : [A, B];

unit my_agent_u {
a : uint;

package b : uint;
};

-- User file
extend my_enum : [C]; -- this is illegal

extend my_agent_u {
keep a == 5; -- this is legal
keep b == 23; -- this is illegal

};

‘‘packagepackage’’ encapsulationencapsulation
Also extremely useful
Should be used to hide non-API
declarations that need to be visible across
struct/unit hierarchy

‘‘privateprivate’’ encapsulationencapsulation
Applies to struct members
Combines concepts of ‘package’ and
‘protected’
‘private’ declarations non visible outside
package or outside struct/unit
‘private’ typically used extensively
‘protected’ typically never used

Other tips and tricks Other tips and tricks --
post_generatepost_generate() checks() checks

Usually use hard constraints to limit range
of API

unit my_agent_u {
mode : [MODE_A, MODE_B];
some_control : uint;

};
extend MODE_A my_agent_u {
keep some_control in [1..3];

};
extend MODE_B my_agent_u {
keep some_control in [4..6];

};

Other tips and tricks Other tips and tricks --
post_generatepost_generate() checks() checks

User error leads to contradiction
Difficult to debug

Especially if result of complex user
constraint

In some cases, can replace with
post_generate() check

Needs caution – may push problem deeper
within eVC

Other tips and tricks Other tips and tricks --
post_generatepost_generate() checks() checks

unit my_agent_u {
mode : [MODE_A, MODE_B];
some_control : uint;

};

extend MODE_A my_agent_u {
post_generate() is also {

if some_control not in [1..3] {
error(“USER ERROR – in MODE_A, some_control”,

“must be in range 1..3”);
};

};
};
-- etc.

Other tips and tricks Other tips and tricks --
scoreboard hook protectionscoreboard hook protection

Scoreboard hooks make internal monitor
data structs visible to the user

Potential for user to modify
Safer to make copy of struct

But…comes with a performance penalty

packet_done(packet);

extend my_monitor_u {

-- This is the scoreboard hook
packet_done(packet : my_packet_s) is empty;

private packet_finished(packet : my_packet_s) is {
...

};

};

Other tips and tricks Other tips and tricks --
scoreboard hook protectionscoreboard hook protection

copy_packet = deep_copy(packet);
packet_done(copy_packet);

The future?The future?
What we’ve seen so far helps…

…but it isn’t enough
Simple encapsulation gives us little
subtlety

A declaration is either visible or invisible
We want to be able to control how the
user uses the API

Enter Enter ‘‘Advanced EncapsulationAdvanced Encapsulation’’
Note… all that follows is vapourware!!!
Basic concept is to define categories of usage for
each API construct
What are the main API constructs?

types/structs/units
fields
events
methods
method parameters

What are the possible usage categories for each?

types/types/structsstructs/units/units
types/structs/units

declare instance (as field or var)
extend

fields
read
write (assign)
constrain
gen/new

events
emit
extend
use in temporal expression

methods
call
start
extend

method parameters
read
modify

Example syntaxExample syntax
Exact syntax is less important than
concept
Will use ‘cryptic’ example syntax

Define modifier letters for each usage
category (similar to unix file permissions)
Modifiers are appended to current
encapsulation syntax
Each modifier specifies an allowable
category of action

Example: modifier lettersExample: modifier letters
types/structs/units

I declare instance (as field or var)
X extend

fields
R read
W write (assign)
C constrain
G gen/new

events
E emit
X extend
U use in temporal expression

methods
C call
S start
X extend

method parameters
R read
M modify

Typical examplesTypical examples
A field that the user can read but cannot modify in
any way (API output):

extend my_monitor_u {
package[R] num_packets_so_far : uint;

};

A field that the user can read and constrain but
cannot assign/gen (typical API control):

extend my_env_u {
package[RC] num_agents : uint;

};

Typical examplesTypical examples
An event that the user can use, but cannot emit:

extend my_monitor_u {
package[U] event packet_done is ...;

};

A method with a read-only parameter that the
user can extend, but cannot call:

unit my_monitor_u {
package[X] packet_done(package[R] packet : my_packet_s)
is empty;

};

Typical examplesTypical examples
A field that the user is denied any access
to:

extend my_monitor_u {
package some_internal_field : uint;

};

Note that the current encapsulation solution
is a sub-set of the advanced encapsulation
proposal.

AdvantagesAdvantages
Developer can specify exactly the intended (and
hence legal) usage of API
User errors result in load-time reporting of exact
violation. E.g.:

Error: cannot constrain field monitor.num_packets_so_far from
outside package my_evc

…guides user to look at API documentation
Misuse of API results in clean error

No possibilities of contradictions or unexpected
‘strange’ behaviour

AdvantagesAdvantages
Advanced encapsulation is backwards
compatible with current simple
encapsulation solution
Addition of permissions to current
encapsulation syntax is intuitive and
scalable
Could be used to give additional guidance
to generator, reducing possibilities for
contradictions

DisadvantagesDisadvantages

Verisity haven’t implemented this yet!

Final thoughts Final thoughts ––
twotwo--way encapsulation?way encapsulation?

We’ve looked at controlling API usage by
user.
What about controlling API usage by eVC
developer?

Allow definition of API design intent looking
both ways.
Possible further guidance for generator?

Final thoughts Final thoughts ––
twotwo--way encapsulation?way encapsulation?

Possible example syntax:

extend my_env_u {
-- num_agents field is a user control. It can be
-- constrained and read by the user, but can only be
-- read from within the eVC. If involved in a constraint
-- within the eVC package, it will be treated as a
-- non-generatable field.
package[RC,R] num_agents : uint;

};

