=

PARADIGM"®

WORKS

Advanced Encapsulation

a panacea for reducing ¥
the support burden? .

Verisity US ClubV 2004

Dr Richard Vialls
Chief Technologist Verification

. PARADIGM"®

WORKS

Introduction

A Introduction of eRM has resulted in large
number of eVCs being developed:

A In-house
A Commercial off-the-shelf

A Verification IP reuse means we have to
address the issue of support

A Perhaps biggest current support issue Is
how to minimise:

USER ERRORS

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Introduction

A We will cover:
AWhat is a user error?
AWhy are user errors important?
ATypical user errors

A How to minimise user errors:
ANow — encapsulation, other ‘tips and tricks’
AThe future — advanced encapsulation?

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

What Is a ‘user error’?

A eVCs are often complex products

A User API Is typically:
AlLarge
ADifficult to document
A User Is often:
AlInexperienced?
ANew to Specman?
ANew to eVCs/eRM?
A Result: User Errors!

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

What Is a ‘user error’?

A Takes user some time to gain a ‘feel’ for
an eVC

A Learning curve typically involves refining
understanding of eVC structure

A Even with the best documentation, user
may start with misconceptions

Alnitial misconceptions will be gross
A Later misconceptions will be more subtle

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Why are user errors important?

A Most common during early ramp-up
A Rates typically tail off during ramp-up

A Assuming good product, more common than eVC
failures

A High incidence of user errors during evaluation

A Ease of use of eVC is largely measured by
frequency and severity of user errors

A High impact on technology uptake!
1 Need to differentiate user errors from other errors

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Typical user errors

A lllegal constraint of field — contradictions!
A lllegal constraint of ‘read-only’ field

A lllegal write to ‘read-only’ field

A lllegal extension of method

A lllegal call of method

A

egal modification of method parameter in
user extension

A etc

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Example: illegal constraint of
‘read-only’ field

-- eVC Code
unit some env_u {

num_squares : ulint;

num_edges : ulilnt;
keep num _edges == num_squares * 4;

}:

-- User Code
extend some env_u {
keep num _edges ==

}:

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

The result...

_ Contradiction:

A contradiction has occurred when generating some_env_u-@0.num_edges :

Previous constraints reduced its range of possible values,
then the following constraint contradicted these values:
keep num_edges == num_squares * 4; at line 9 In @test
Reduced: some_env_u-@0.num_edges into []
Using: some_env_u-@0.num_squares == [1077154777]
To see details, reload and rerun with "collect gen”

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Solution 1: documentation

A Need to carefully document API so that user

understands correct usage. E.g.:

unit some env_u {

-— This field controls the number of squares

—— 1n the environment. The user should constrain
-- this fTield.

num_squares : ulnt;

-— This field indicates the number of edges in the
-— environment. lts value is automatically constrained
-- by the eVC and should not be constrained by the user.
num_edges : uilnt;

keep num_edges == num_squares * 4;

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Solution 1: documentation

A Documentation can be auto-extracted to
reference manual (using eDoc)

A However...

A Good documentation is essential, but...

4 ...good documentation doesn’t necessarily
prevent user errors

A Hence the term — RTFM! Errors:
‘READ THE *****+x MJANUAL!’

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

The requirement

A Need automated (preferably load-time)
solution to inform user of AP| usage errors

AMust make clear distinction between API
usage errors and other classes of error

AMust give user sufficient info to debug
A Should be easy/intuitive to code

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM’

WORKS

Solution 2: encapsulation

A Simple encapsulation added to Specman
4.1

A Provides ability to hide types and
struct/unit members

A Three levels of encapsulation: protected,
package and private

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

‘protected’ encapsulation

A Hides struct/unit members from code outside
struct/unit

unit my agent u {
a I uint;
protected b : uint;
}s

extend sys {
agent - my agent u is Instance;
keep a == 5; -- this i1s legal
keep b == 23; -- this is i1llegal

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

‘protected’ encapsulation

A ‘protected’ is extremely useful tool

A Should be used to hide non-API
flelds/methods/events/etc. within each
struct/unit

A No good for struct members that are used
across struct/unit hierarchy

A Need ‘package’ encapsulation

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

‘package’ encapsulation

A Introduces concept of encapsulation
package

A a group of files marked as belonging to same
package (not the same as eRM package)

A Can be used on types and struct/unit
members

A Hides declarations from code outside
package

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

‘package’ encapsulation

-- eVC fTile
package my evc;

package type my enum : [A, B];

unit my agent u {
a - uint;
package b : uint;

};

-- User fTile
extend my enum : [C]; -- this i1s i1llegal

extend my agent u {

keep a == 5; -- this i1s legal
keep b == 23; -- this is i1llegal
}:

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

‘package’ encapsulation

A Also extremely useful

A Should be used to hide non-API
declarations that need to be visible across
struct/unit hierarchy

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

‘private’ encapsulation

A Applies to struct members

A Combines concepts of ‘package’ and
‘protected’

A ‘private’ declarations non visible outside
package or outside struct/unit

A ‘private’ typically used extensively
A ‘protected’ typically never used

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Other tips and tricks -
post_generate() checks

A Usually use hard constraints to limit range
of API

unit my agent u {
mode : [MODE_A, MODE B];
some_control : uint;

33

extend MODE A my agent u {
keep some control 1n [1..3];

}s

extend MODE B my agent u {
keep some control iIn [4..6];

}:

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM’

WORKS

Other tips and tricks -
post _generate() checks

A User error leads to contradiction

ADifficult to debug

AEspecially if result of complex user
constraint

A In some cases, can replace with
post_generate() check

A Needs caution — may push problem deeper
within eVC

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Other tips and tricks -
post_generate() checks

unit my agent u {
mode : [MODE_A, MODE_B];
some_control : uint;

¥

extend MODE_A my agent u {
post generate() i1s also {
iIT some _control not in [1..3] {
error(““USER ERROR — 1n MODE_A, some_control”,
“must be 1n range 1..37);

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Other tips and tricks -
scoreboard hook protection

A Scoreboard hooks make internal monitor
data structs visible to the user

A Potential for user to modify

A Safer to make copy of struct
ABut...comes with a performance penalty

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Other tips and tricks -
scoreboard hook protection

extend my monitor_u {

-- This 1s the scoreboard hook
packet done(packet : my packet s) 1s empty;

private packet finished(packet : my packet s) i1s {

copy_packet = deep_ copy(packet);
packet_done(papketdcket);
};

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM’

WORKS

The future?

A What we've seen so far helps...
A...but it isn’t enough

A Simple encapsulation gives us little
subtlety

A A declaration is either visible or invisible

A We want to be able to control how the
user uses the API

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Enter ‘Advanced Encapsulation’

A Note... all that follows is vapourware!!!

A Basic concept is to define categories of usage for
each API construct

A What are the main API constructs?

A types/structs/units
A fields
A events

A methods
4 method parameters

A What are the possible usage categories for each?

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

types/structs/units

A types/structs/units
A declare instance (as field or var)
4 extend
4 fields
4 read
A write (assign)
A constrain
4 gen/new
4 events
4 emit
4 extend
A use in temporal expression
4 methods
4 call
A start
4 extend
4 method parameters
4 read
A modify

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Example syntax

A Exact syntax Is less important than
concept
A Will use ‘cryptic’ example syntax

A Define modifier letters for each usage
category (similar to unix file permissions)

AModifiers are appended to current
encapsulation syntax

A Each modifier specifies an allowable
category of action

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Example: modifier letters

A types/structs/units
A 1 declare instance (as field or var)
4 X extend
4 fields
4 R read
A W write (assign)
4 C constrain
4 G gen/new
4 events
4 E emit
4 X extend
A U use in temporal expression
4 methods
4 C call
4 S start
4 X extend
4 method parameters
4 R read
3 M modify

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Typical examples

A A field that the user can read but cannot modify in
any way (API output):

extend my monitor_u {
package[R] num_packets so far : uint;

¥

1 A field that the user can read and constrain but
cannot assign/gen (typical API control):

extend my env_u {
package[RC] num_agents : ulnt;

};

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Typical examples

4 An event that the user can use, but cannot emit:

extend my monitor_u {
package[U] event packet done is ...

¥

A A method with a read-only parameter that the
user can extend, but cannot call:

unit my monitor_u {
package[X] packet _done(package|[R] packet : my packet_ s)
IS empty;

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Typical examples

A A field that the user Is denied any access
to:

extend my monitor_u {
package some_ internal_ field : uint;

¥

A Note that the current encapsulation solution
IS a sub-set of the advanced encapsulation
proposal.

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Advantages

A Developer can specify exactly the intended (and
hence legal) usage of API

A User errors result in load-time reporting of exact
violation. E.g.:

Error: cannot constrain field monitor.num packets so far from
outside package my evc

A ...guides user to look at API documentation

3 Misuse of API results in clean error

A No possiblilities of contradictions or unexpected
‘'strange’ behaviour

® Copyright 2000-2004 Paradigm Works Inc.

. PARADIGM"®

WORKS

Advantages

A Advanced encapsulation is backwards
compatible with current simple
encapsulation solution

A Addition of permissions to current
encapsulation syntax Is intuitive and
scalable

A Could be used to give additional guidance
to generator, reducing possibilities for
contradictions

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Disadvantages

A Verisity haven’t implemented this yet!

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM’

WORKS

Final thoughts —
two-way encapsulation?

A We've looked at controlling APl usage by
user.

A What about controlling APl usage by eVC
developer?

A Allow definition of API design intent looking
both ways.

A Possible further guidance for generator?

® Copyright 2000-2004 Paradigm Works Inc.

PARADIGM®

WORKS

Final thoughts —
two-way encapsulation?

A Possible example syntax:

extend my env_u {
-- num_agents field 1s a user control. It can be
-— constrained and read by the user, but can only be
-— read from within the eVC. ITf involved in a constraint
-— within the eVC package, 1t will be treated as a
—-— non-generatable field.
package[RC,R] num _agents : ulint;

® Copyright 2000-2004 Paradigm Works Inc.

