
Augmenting a C++/PLI/VCS Based
Verification Environment With

SystemC

Dr. Ambar Sarkar
Paradigm Works Inc.

Andover MA

2
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Agenda
• Why integrate?
• C++/PLI Based Environments

– Verilog-on-top approach

• SystemC/SCV Environments
– SystemC-on-top approach

• Integrated Environment
– Incorporate SystemC transactors into legacy environment

• Integration Challenges
– Interaction between legacy objects and SystemC transactors

• Conclusions

3
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Why Integrate?

• HVLs (e, Vera, SystemC/SCV) now state-of-the-art
• Projects want to adopt HVLs for their next project

– Preserve existing verification code

• SystemC is C++ code
• Allows a evolutionary path towards adopting a HVL

4
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

C++/PLI Based Environments

PLI based C/C++
side of transactors PLI Code/Low-level BFM

Verilog Top-level

IPC

DUV

Test Driven Simulator Driven

Test

C/C++ Verilog

5
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

C++/PLI Based Environments -- Issues

• Indirect interaction with Verilog
• Unavailability of HVL features at all levels of abstraction
• Synchronizing simulation time
• Verilog-on-top model

6
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

PLI Environment Issues -- Indirect interaction with Verilog

• Fine grain control of stimulus not easily attained
– Needed for verification

• C code does not directly manipulate DUT signals
– High level transaction requests are queued from the C side
– Only the verilog code directly manipulates the signal
– Significant effort needed to observe/manipulate Verilog signals directly

from C side

• Hard to synchronize with events on the Verilog side

7
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

PLI Environment Issues -- Unavailability of HVL features at all
levels of abstraction

• Verilog used at low level transactor implementation
• Following advanced features thus not available

– Pointers
– Standard Template Library
– Reentrant tasks

8
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

PLI Environment Issues -- Synchronizing simulation time

• C++ side has no notion of time
– Blocking calls
– Non-blocking calls

• Hard to synchronize based on simulation time
• Requires extra work

9
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

PLI Environment Issues -- Verilog-on-top model

• Verilog side is the topmost object hierarchically
– Controls advancement of time
– C side initiated with PLI call from Verilog side

• Top-level testbench code is Verilog
– Typically requires more work compiling test code
– Less convenient than writing top-level code using HVL

10
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

SystemC/SCV Environments
• SystemC

– A C++ based hardware verification language
– Has built in notion of simulation time
– Standardized, non proprietary
– Has constructs that can mimic hardware languages such as Verilog
– More like a HDL

• SCV (SystemC Verification Library)
– Additional library dedicated to verification
– Full support for constrained randomization

11
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

SystemC/SCV Environments – Typical Implementations

Verilog Top-level

Test

DUV

SystemC Transactors

12
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

SystemC/SCV Environments – Advantages

• Direct interaction with DUV
• HVL features available at all levels of abstraction
• Built-in synchronization between Verilog and SystemC
• Follows HVL-on-top model

13
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integrated Environment

PLI based C/C++
side of transactors PLI Code/ Low-level BFM

Verilog Top-level

IPC

DUV

C/C++ Domain Verilog Domain

Test

C/C++ Verilog

SystemC Transactors

14
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges
• Linking with VCS
• Compiling with legacy transactors
• Instantiating SystemC Transactors
• Multiple instantiations
• Communicating between SystemC and PLI transactors
• Error Reporting
• .. and so on

15
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Linking with VCS
• Need to integrate OSCI reference implementation with VCS

– Download reference implementation from OSCI
– Minor source code changes

Couple of files provided by Synopsys
Provides DKI based interaction between
 SystemC reference implementation kernel
 VCS Simulator

• Different simulators have different approaches

16
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Compiling with Legacy Transactors
• syscan utility

– Generates Verilog wrapper code
– Compiles the relevant SystemC files
– Links resulting object files with the objects generated from the other

verilog files.

syscan -cpp <cpp> -Mdir=<work_csrc_path> <srcfiles> -cflags <cflags>

Where <cpp> is the path to the SystemC compatible C++ compiler
 <work_csrc_path> is the path to the output directory for the VCS
 compilation and should be the same as the
 one used for the legacy environment
 <srcfiles> list of files that declare and define the SystemC modules
 <cflags> any relevant C compilation flags including those used
 in the legacy environment

17
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Compiling with Legacy Transactors
• Several gotchas

– C++ compiler version
Older version used by legacy
Different versions needed for Solaris/Linux

– Incompatibilty of legacy code with SystemC

scvproxy.h

#ifndef __SCVPROXY_H__
#define __SCVPROXY_H__
#include “scv.h”

void RegisterWrite(uint addr);
….
#endif

scvproxy.cc

#include “scvproxy.h”
#include “Register.h”
void RegisterWrite() {
 Register::Write(addr);
}
….

18
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Instantiating SystemC Transactors

• Transactors instantiated in Verilog Domain (PLI code)
– Instance handle not available from C side directly

 Transactors instantiated by Verilog through PLI, not C
 Cannot access handle of Verilog PLI created transactor from
C/C++ testbench code

– Cannot just create an instance on C side and expect it to work
 Instance created from C side cannot access Verilog signals
 Need to use the instance created by Verilog PLI

• Use C++ static methods to pass handles between domains
– static ScXactor * ScXactor::GetHandle();

19
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Instantiating SystemC Transactors
ScXactor.h
SC_MODULE(ScXactor) {
public:

 SC_CTOR(ScXactor) { …
 m_pScXactor = this;
 }

 // Access this instance
 static ScXactor * GetHandle() {
 return m_pScXactor;
 }

 void DoFoo();

private:
 static ScXactor *m_pScXactor;
};

ScXactor.cc
// This will get initialized only when the
// constructor is called
ScXactor * ScXactor::m_pScXator = 0;

Test.cc

#include “ScXactor.h”

ScXactor *pXtr;
…
 pXtr = ScXactor::GetHandle();
 if (!pXtr) {
 // Print error
 exit();
 }
 pXtr->DoFoo();

20
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Multiple SystemC Transactors
• Multiple instantiation of same transactors quite common

– Different instances for each interface port

SC_MODULE(ScXactor) {
public:
 sc_in <sc_logic> id, clk;
 sc_inout <sc_lv<16> > data;

 SC_CTOR(ScXactor):
 id(“id"), clk(“clk"), data("data")
 {
 // The following would not work
 m_pScXactor0 = (id = 0) ? this:0;
 m_pScXactor1 = (id = 1) ? this:0;
 }
private:
 static ScXactor *m_pScXactor0;
 static ScXactor *m_pScXactor1;

testbench.v
ScXactor ScXactor0(.id (1’b0), .clk(clk),
 .data(data));
ScXactor ScXactor1(.id (1’b1), .clk(clk),
 .data(data));

Does not work!

• Wrapper code initialization not complete

• Crash or hang!

21
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Multiple SystemC Transactors
• Checking instance id done outside constructor
• Need to wait before the passed in port id can be read by transactor

ScXactor.h
SC_CTOR(ScXactorT):
 id("id"), clk("clk"), data("data") {
 // The following workaround is needed
 // in case of multiple instantiations. The
 // thread will eventually read the id port
 // and set the pointers to transactor
 // instances accordingly
 SC_THREAD(detect_id_thread);
 …
}

void detect_id_thread();

ScXactor.cc
// The following thread reads the assigned
// value to the id port and sets the instance
// pointers accordingly
void ScXactorT::detect_id_thread()
{
 // Wait for a small time to make sure the
 //SystemC reads the value of id
 wait(1, SC_NS);
 if (id == 0)
 m_pScXactor0 = this;
 else
 m_pScXactor1 = this;
}

22
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Comunicating between SystemC and
PLI Transactors

• Testbench code can call both transactors
• Legacy transactor can call SystemC

– Simulation time can advance in SystemC transactor method

• SystemC transactor can call Legacy
– Except for blocking calls

Simulation time cannot advance in legacy transactor method
– Workaround using asynchronous calls and polling

Instead of:
 read_data = legacyTransactor.read_blocking(addr);
Use:
 legacyTransactor.read_non_blocking(addr);
 while (!LegaacyTransactor.read_done()) wait();

23
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Error Reporting
• Need a common error reporting API

– SystemC/SCV has extensive support
– Legacy environment as its own error reporting

• Need to forward SystemC/SCV system error messages as well
– Failures during randomization

• Override default SystemC report handler class

24
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Error Reporting
• Override default SystemC report handler

class ProjectReportHandler: public scv_report_handler {
public:
 static void report(
 scv_severity severity,
 scv_msg_type msg_type,
 const char * msg,
 const char *file, int line
) ;
};

ProjectReportHandler project_report_handler;
scv_report_handler::set_handler(project_report_handler);

25
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Integration Challenges – Error Reporting

void ProjectReportHandler::report(scv_severity severity, …
{
 string tmStmp = sc_time_stamp().to_string();
 switch (severity) {
 case SCV_INFO:
 LEGACY_INFO("%s:Time: %s: %s\n", msg_type, tmStmp.c_str(), msg);
 break;
 case SCV_WARNING:
 LEGACY_WARNING("%s:Time: %s: %s\n", msg_type, tmStmp.c_str(), msg);
 break;
 case SCV_ERROR:
 LEGACY_ERROR("%s:Time: %s: %s\n", msg_type, tmStmp.c_str(), msg);
 break;
 case SCV_FATAL:
 LEGACY_FATAL("%s:Time: %s: %s\n", msg_type, tmStmp.c_str(), msg);
 break;

}

26
Ambar Sarkar
Paradigm Works Augmenting a C++/PLI/VCS Based Verification

Environment With SystemC

Conclusions

• Feasible to incorporate SystemC support into Legacy
environments

• Takes effort to integrate SystemC transactors to the fullest
extent

• Integrated environment has all benefits of SystemC while
preserving legacy vestments

	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC
	Augmenting a C++/PLI/VCS Based Verification Environment With SystemC

