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Abstract— Applying parallel logical streams of stimulus to a DUT 
(Device Under Test) is a common verification requirement, 
whether these streams are defined by physical interface signal 
values, transaction content, or other characteristics.  This paper 
explores a set of architectural choices to be made in providing a 
solution for such a requirement.  Each solution is considered in 
terms of measurable performance metrics, flexibility of the 
solution, partitioning of functionality, and ease of management.  
We will consider whether one can arrive at a single solution 
reasonably suited for all situations.  While the paper focuses on a 
UVM (Universal Verification Methodology [1]) solution space, 
the concepts are transferrable to other current high-level 
verification languages. 
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I.  INTRODUCTION 
The need to shape and deliver parallel streams of stimulus 

to the DUT is a frequent issue.  A best-case solution for 
delivering such stimulus must balance the often conflicting 
requirements of performance, flexibility, and proper 
partitioning.   In terms of performance, typical metrics are 
image size and runtime.   Primary points of concern for 
flexibility include ease of managing the number of streams, 
controlling each stream’s characteristics, and modifying any 
arbitration algorithm.   Issues of partitioning include 
maintaining each verification component as independently 
reusable, protecting the generally inflexible aspects of protocol 
from unintended modification, and providing a reasonable user 
API for managing flexible aspects of the protocol. 

II. PROBLEM STATEMENT 
There are several reasons one may wish to make use of 

parallel, logical streams of stimulus, many of which will 
impose requirements beyond the innate capabilities of most 
verification languages and methodology base class 
implementations.  There may be a required limit on the rate at 
which transactions are delivered on a particular stream.  There 
may be periodic operations that need to interleave with the 
more general stimulus applied.  There may be a need to utilize 
transactions and sequences developed for a higher level of 
abstraction, perhaps utilizing third party IP.  Such third party IP 
may provide useful sequences that one would like to be able to 

apply to some other interface protocol, or simply because one 
wants to maximize reuse of stimulus between system-level and 
block-level testing on a component. 

The base classes provided by UVM (Universal Verification 
Methodology) and like methodologies have some capacity for 
managing parallel streams of stimulus.  There is provision for 
arbitration between available sequences in a UVM sequencer, 
which may be fine for default cases, but may not suffice for 
more complex situations.  SystemVerilog’s [2] dist constraint 
type likewise provides some control over relative frequency of 
one stream versus another.   However, that doesn’t suit metered 
delivery concept well. 

What is wanted in these cases is typically an approach that 
allows each logical stream to be independent of, and non-
blocking to other logical streams.  These stimulus sources may 
be free running throughout the operational portion of a test or 
not.  They may be native to the interface being tested or not.  
They may be of like protocol one with another or not (example:  
PCIe and Ethernet traffic protocols both being transferred 
across some shared interface of the DUT, whether external or 
internal.) 

III. PREPARE YOUR PAPER BEFORE STYLING 
Architectural choices made in developing the testbench can 

have a large impact on simulation performance.  These impacts 
should be a driving factor in these choices.  Simplicity of 
testbench and test development count, but runtime for tests will 
have the greater impact on schedule in the end. 

Five approaches are considered, and the results compared.  
The approaches consider two primary sets of choices as to how 
to achieve parallelization.  The first choice is whether to 
achieve parallelism by forking off multiple sequences within a 
single sequencer or by constructing a separate sequencer for 
each stream. 

When the application requires conversion from one 
transaction type to another, a second choice arises as to 
whether to implement conversion within the higher or lower 
verification component.  Such conversions may be due to 
applying sequences foreign to the interface verification 
component, segmentation requirements, or other issues.  Here, 
the choice is whether to convert in the higher or lower 
verification component. 



A. Basic UVC Structure 
To begin with, consider the general description of a 

standard UVM verification component, or UVC [3].  For 
purposes of this discussion, we will consider the structure of a 
UVC implementing a single agent.  The typical UVM agent 
consists of a sequencer for creating stimulus, a driver for 
applying said stimulus to the interface wires, and a monitor for 
reconstructing transactions observed on the interface.  For the 
purposes of this paper, any response path from driver to 
sequencer is ignored. 
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Figure 1.  UVC Structure 

In Figure 1. through Figure 7. the dark green “xn” items are 
transactions, and the lighter green “seq” items are sequences.  
These indicate the object instances constructed at a given point 
in time.  For example, in Figure 1 the “seq” object is 
constructed in the sequencer, and contains an “xn” object to 
which both sequencer and driver have a handle.  The monitor 
constructs a separate “xn” object which will be forwarded out 
its analysis port TLM (Transaction Level Modeling [4]) port. 

The yellow “cfg” object is a single configuration object to 
which all components of the agent have a handle.  This object 
may have variable runtime controls for the UVC, and / or state 
shared between the components.   

 
Sequences may be applied to the sequencer under direction 

of the test being run, or the sequencer may be assigned a 
specific sequence to be run for the duration of one or more test 
phases.  Sequences are typically created at the driver’s request, 
and a single transaction from this sequence sent to the driver.  
Thus, at any point in time there is but one sequence / 
transaction on the active side of the UVC (composed of 
sequencer and driver), and one on the passive (monitor) side.  
This situation changes as parallel streams of stimulus are 
created. 

B. Where to Parallel 
The first question to answer is whether to achieve 

parallelism by implementing parallel sequences or parallel 
sequencers.  Certainly, issuing parallel sequences on a single 
sequencer is the simplest to conceptualize. 

1) Parallel Sequences 
In Figure 2. a new sequence, main_seq, is introduced.  The 

body of this sequence constructs a seq instance for each logical 
stream, launching each seq as a forked process, and allowing it 
to run indefinitely.  Note that while this sequence is shown as 
issued by the UVC’s sequencer, it could as easily be running on 

the testbench’s virtual sequencer.  There is always one instance 
of each stream’s sequence constructed.  In this case, which 
sequence next provides a transaction to the driver is 
indeterminate, depending only on the order in which the several 
streams happen to construct transactions.  The driver will, 
however, have handle to at most one transaction.   One further 
transaction instance is constructed by the monitor observing the 
interface, which it provides via TLM to any interested parties. 
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Figure 2.  UVC Implementing Parallel Sequences 

Of the five methodologies considered, this approach 
maintains a significant advantage for image size, and is 
comparatively good in terms of runtime.  Little is added to 
complexity.  The UVC itself requires no modifications.  What 
is added is a containing main sequence (shown in blue).  
Beyond forking off the logical stream sequences, this sequence 
may need a means to terminate the logical stream sequences 
when the test’s active stimulus period (run_phase in UVM) is 
complete.  If arbitration is needed, it would also be 
implemented in this main sequence. This avoids the need to 
extend the UVC’s sequencer. 

Partitioning is not ideal in this case.  Arbitration and 
termination of the logical stream sequences are both managed 
by the main sequence.  Providing separate methods within the 
main sequence to implement these activities will help.  The 
impact is minimal, but it is something to remain aware of.   

Managing the characteristics of each logical stream may 
require development of unique sequences for each stream.  In 
many cases, a common sequence can be used by applying 
constraints to fields of the sequence.  This simplifies 
implementation of the main sequence, but it may limit its 
flexibility.  The common sequence can be instanced as an 
array, simplifying the main sequence.  Using a dynamic array 
will make selection of included streams more efficient.   

Use of a common sequence is not a requirement of the 
approach, then, but shows distinct advantages.  Adding or 
removing streams for a given test can be easily accomplished.  
Including a control field in the main sequence and constraining 
it as desired from the test gives a means of determining which 
logical stream sequences to construct.  Type of sequence to 
construct, or constraints to be applied, may be fixed based on 
stream number, or may be configurable by further fields in the 
main sequence. 

2) Parallel Sequencers 



The alternative of using parallel sequences is to provide a 
separate sequencer for each stream.  The greater complexity of 
this approach is clear from Figure 3.    
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Figure 3.  Using Parallel Sequencers 

In Figure 3. through Figure 6. orange components require 
extending the UVC component.  Factory methods can be used 
to replace the original components with their extended 
versions. 

This approach builds on the stacked UVC approach, with 
the sequencer of an upper, or “upstairs” UVC connecting to a 
lower, or “downstairs” UVC’s sequencer, rather than its own 
driver.  For this discussion, suppose upstairs and downstairs 
UVCs to be of the same type.  One added requirement for 
stacked UVCs is a means to deconfigure the driver in the 
upstairs UVC.  No other modifications are required for the 
upstairs UVC. 

In the downstairs UVC, we must provide new TLM 
connections into the sequencer component, which in turn 
requires that we introduce a sequence, a sequencer method, or 
some other means by which to select between those TLM 
connections.  The pull type nature of these connections, where 
the driver requests an item which the sequencer then provides, 
may impose certain restrictions on the way arbitration is 
implemented.  In a TDM (Time Domain Multiplexed) 
application, for example, stream selection is very deterministic.  
In other cases, the driver may implement some means of 
indicating which stream is requested.  A typical case would be 
to simply arbitrate in round-robin fashion between all available 
streams.   

Whatever the mechanism, its implementation should take 
steps to avoid creating another set of sequence or transaction 
instances.  Care should also be taken to avoid constantly 
requesting new sequences from the upper UVCs, leading to 
further unnecessary increases in image size at the beginning of 
the test. 

Whether it is easier to manage constructing and connecting 
sequencers or whether it is easier to manage sub-sequence 

construction for a given test is debatable point.  If one typically 
applies a default sequence to each sequencer which it runs 
throughout the active portion of the test, then managing at the 
sequencer may actually be more intuitive.  It can be controlled 
easily enough by including in the testbench environment the 
same sorts of knobs that were described for the main sequence 
used in the parallel sequence approach.  This would impact 
UVM’s build_phase and connect_phase, but is otherwise fairly 
non-intrusive.   

Clearly, adding parallel sequencers adds complexity.  Data 
shows that it will also have an adverse effect on image size and 
performance.  Given that complexity, why would one choose 
such an approach?  What advantages does it offer? 

One advantage lies in the fact that we can now partition the 
arbitration as a separate sequence running on a separate 
sequencer, or as a method of that sequencer if the algorithm is 
fixed.   Having a dedicated sequencer for each stream may 
simplify the nature of the sequences themselves, or increase the 
opportunity for reuse of existing sequences.   

The primary advantage of the approach is that it allows for 
the possibility that not all streams are even of the same 
fundamental type.  Suppose a given logical stream may be 
Ethernet or ATM traffic, and that differing third party IP is 
utilized for both types.  These sequences cannot easily be 
supplied to a common sequencer.  However, having multiple 
UVCs in the upper level allows the possibility that not all 
UVCs are of the same kind.   

Where there is a need for multiple stimulus types, this 
approach is mandated.  Other situations requiring conversion 
may require a stacked UVC approach, but not necessarily the 
parallel instances of the upper layer suggested here. 

C. Where to Convert 
Supposing a need for conversion, the next question is where 

conversion is to be done.  We can assume at least one upstairs 
UVC.  This UVC may implement some protocol which 
happens to be transferred across the downstairs interface.  It 
may simply create complete packets while the downstairs UVC 
is operates on segments or fragments of these packets.   

What is being done on the upstairs downstairs path likely 
needs to be reversed in the monitor components of the UVCs.   
This paper considers only the active, upstairs downstairs path.  
Should an upstairs UVC convert to downstairs transaction 
types, or should the downstairs UVC accept the upstairs 
transaction type and do the conversion? 

1) Downstairs Conversion 
UVM advocates performing the conversion downstairs, as a 

part of extending the sequencer.  The changes to the parallel 
sequencer approach are shown in Figure 4.  Upstairs sequences 
and transactions are shown in blue from here forward. 
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Figure 4.  Parallel Sequencer Implementation with Downstairs Conversion 

The downstairs sequencer needs further extension.  
Previously, it had been fit with TLMs to field sequences from 
upstairs.  Now, it must also implement whatever conversions 
are required.  This may be a one-to-many conversion for a 
segmenting interface.  It may be translating from a “foreign” 
transaction type to native. While the monitor path is not in 
focus in this paper, it must be observed that the monitor will 
need to be extended to translate in the reverse direction.  Where 
segmentation is being done, this also introduces an array of 
partial transactions that are not yet ready to be passed upstairs.  

The primary benefit of this approach is that it limits 
component modifications to the downstairs UVC.  However, it 
does introduce potential issues in terms of properly partitioning 
operations.  We still have the need for an arbitration sequence.  
Now, we add the need for a sequence or method per inbound 
TLM to perform the conversion.  The choice of sequence or 
method hinges on how fixed the operation is.  If the operation 
is fixed, a method is preferable, as it better hides the operation 
from the user.  If it is more variable, a sequence provides the 
user with better control over the variability. 

2) Upstairs Conversion 
Given that a UVC typically translates from the higher 

abstraction of a transaction class to the lower abstraction of 
driven signals, it may feel more consistent to perform 
conversion upstairs.  This more neatly partitions the tasks 
required.  The upstairs UVC creates the stimulus and converts 
it to the transaction type of the downstairs UVC, an activity 
analogous to that of a standard driver component.  The 
downstairs UVC deals solely with issues of arbitration, driving 
the selected transaction on the wires. 
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Figure 5.  Parallel Sequencer Implementation with Upstairs Conversion 

The upstairs UVC is shown with a driver component in 
Figure 5.  Ideally this component would not be needed.  
However, sequencers are strongly typed such that the 
sequencer’s TLM necessarily matches the transaction type 
provided by its sequences.  Short of completely rewriting the 
sequencer, this is not something easily changed.  Thus, we 
instead extend the upstairs driver, replacing its usual interface 
with another TLM.   

This new TLM is of the same nature as the sequencer TLM, 
but takes transactions of the downstairs UVC’s type.  The 
driver is thus required to provide all the methods of this 
request/response type TLM.  Methods may be left as 
unimplemented callbacks (task foo(); endtask) if one can be 
certain the functionality will not be required.  However, 
maximum reusability will be achieved by implementing all 
such methods completely. 

On the passive side, all that has really happened is that the 
monitor extension is done upstairs rather than downstairs.  The 
TLM added to the upstairs monitor is again typed for the 
downstairs transaction type.  This extension will need some 
means of identifying which downstairs transactions belong to 
its stream and which can be ignored. 

This is the most complex solution to implement.  It is also 
the most flexible.  Returning to the case of logical streams with 
differing protocols, consider the conversion issue.  If 
conversion is done downstairs, then we must have multiple 
arrays of TLM connection, each dedicated to a specific 
protocol.  The downstairs monitor will likewise require at least 
one TLM per upstairs transaction type.  Further, the transform 
methods become more complex, as they now must determine 
both the type being transformed and how that transform is to be 
accomplished.   

There is a partitioning advantage with upstairs conversion.  
Each driver or monitor extension deals only with a single sort 
of conversion.  The downstairs UVC remains wholly agnostic 
to what sort of stimulus its transactions derive from, concerned 



only with arbitrating between whatever comes in, and blindly 
delivering all observed results upstairs.   

D. Simplification 
There is nothing intrinsic to the need for conversion that 

requires parallel sequencers upstairs.  Both upstairs and 
downstairs conversion can be done with a single upstairs UVC.  
That upstairs UVC can then implement a parallel sequence 
approach just like the first approach considered.   

This is shown with upstairs conversion in Figure 6.  
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Figure 6.  Parallel Sequence Implementation with Upstairs Conversion 

The primary benefit is a reduction in the number of UVCs 
and TLMs in our testbench, reducing overall image size.  It 
may also be observed that managing the response return path 
on the active side is much simplified, as is the managing of 
reconstruction on the monitor side.   

Similar simplification can be achieved with downstairs 
conversion.  This will introduce the need to manage the 
interface UVC sequencer extension so as to avoid allowing one 
stream to block others.  Again, the thing to watch is that one 
does not wind up requesting an infinite series of upstairs 
sequences and thus increasing the image size unnecessarily. 

The case of a segmenting interface UVC can be construed 
as a case for this approach, although contained in a single 
UVC.  This is shown in Figure 7.  This could also have been 
implemented as a stacked pair of UVCs.  However, where 
segmentation is integral to the interface this is cleaner. 
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Figure 7.  Segmenting UVC Implementation 

E. Performance Assessment 
Experiments were run to compare these approaches.  Each 

testbench used a UVC developed by Paradigm Works and 
implementing Altera’s Avalon Memory-Mapped Interface for 
the downstairs UVC, and another implementing PLDA’s 
EZDMA protocol for the upstairs UVC(s) when present.  To 
better ensure that observed variations were due to the means 
used to obtain parallelism and not unrelated factors, all tests ran 
transactions of one fixed size, consisting of a single phase write 
to one common address.  Where conversion occurred, it was 
always one-to-one. 

For each approach, tests were run across a matrix of 
number of streams versus total number of transactions, so as to 
obtain a profile of any trends.  Each test was run singly on the 
same machine, using the same simulator to further minimize 
unrelated variation.  Image size is shown in Figure 8.  
Performance, normalized as CPU seconds per microsecond of 
simulation time, is shown in Figure 9.  In the latter case, the ten 
transaction results are eliminated, as they are of limited value 
beyond indicating the fixed overhead of the test. These figures 
are specific to the approach of using parallel sequences with 
conversion done downstairs. 

 
Figure 8.  Image Size for Parallel Sequence Implementation 



 

Figure 9.  Performance for Parallel Sequence Implementation 

Of particular note, image size does not show any signs of 
being impacted by parallelization of sequences.  Further, while 
performance clearly degrades when there is massive 
parallelism, the trends are nearly identical for both the 10k and 
100k run lengths.  This suggests that any overhead induced 
during testbench initialization is relatively small. 

For the parallel sequencer implementation, image size is 
shown in Figure 10.  Performance is shown in Figure 11. The 
downstairs conversion option is again chosen.  Whether using 
parallel sequences or parallel sequencers, moving conversion 
upstairs does not significantly change the trends seen in these 
graphs, although the specific values differ.  Here, we see that 
while image size is still pretty constant, there is a distinct 
uptick when we arrive at the 1000 stream case. 

 

Figure 10.  Image Size for Parallel Sequencer Implementation 

 

The situation for performance is more interesting, and 
demonstrates the primary performance issue seen with parallel 
sequencers:  There’s a lot of zero time inertia to overcome as 
the number of streams rises.  Notice that at the 1000 stream 
data point, the 10k performance data is more than double what 

is observed at 100k.  The 10 transaction measurements (not 
shown) come in nearly 100x worse than the 10k. There’s a 
great deal of time being spent during the build and configure 
phases with this approach.  That’s a factor to consider in the 
architectural decision.  Necessity may dictate a parallel 
sequencer approach even where massive parallelism is 
expected.  But, there’s a huge upfront cost that applies to every 
simulation run.  Plan for it. 

 

Figure 11.  Performance for Parallel Sequencer Implementation 

Next, we compare and contrast the five solutions in terms 
of these same performance metrics.  Once again, we’ll consider 
image size first, shown in Figure 12.  The results are much as 
one would expect.  Adding conversion has greater impact on 
the image size than does the choice of where it is 
accomplished.  Barring the massively parallel cases, the cost is 
pretty much the same for all conversion approaches.  In these 
latter cases, the parallel sequencer approach adds another 
400MB or so to the image size. 

Comparative performance results are shown in Figure 13.   
Here, one begins to see some significant distinction between 
approaches, particularly in the more parallel cases.  Overall, it 
appears that parallel sequences have some advantage over 
parallel sequencers particularly for large-scale parallelization. 



 

Figure 12.  Methodology Comparison: Image Size 

 

Figure 13.  Methodology Comparison: Performance 

Upstairs conversion, while more complex, is advantageous.  
Comparing only the “Seqs – DnStrsConvert” and “Seqs – 

UpStrsConvert” cases, there appears to be an inflection point in 
the number of parallel streams below which doing conversion 
downstairs is actually more efficient in terms of run time.  Up 
to and including the 200 stream test, downstairs conversion 
performed better, running up to 2x faster in some cases.  
However, starting with the 500 stream case, the results toggle, 
and upstairs conversion begins to outperform downstairs. 

It should also be noted that at these extremes, given the 
more generally observed degradations in performance, the 
differences are going to be felt much more strongly than in 
those earlier cases.  The loss of .06s/us will be felt nearly as 
much as the loss of 1.1 s/us.  It will depend on whether there is 
any possibility that you will ever need to support so large a 
number of streams.  If there is one fundamental take away from 
this, it is that where the potential for massive parallelization of 
stimulus exists, the approach chosen becomes all that much 
more critical. 

IV. CONCLUSION 
Based on the results obtained with regard to performance 

metrics, as well as the relative complexity of the several 
approaches considered, there are some conclusions that can be 
drawn.  First, it is clearly preferable to achieve parallelization 
through sequences rather than sequencers.  The issue of where 
to convert is a bit murkier, but in general, downstairs 
conversion is to be preferred.  It provides a reasonably 
straightforward means of handling conversion, and allows a 
sufficient degree of partitioning. The exception would be when 
massive parallelization is expected. 

At the outset, we stated an interest in arriving at a universal 
solution that would fit all circumstances.  The nearest we have 
to such a solution is that of a stacked approach utilizing parallel 
sequencers with any conversion done in the upper layers.  
However, this approach is also the most complex of those 
considered, and the worst performer.  As such, our 
recommendation is that such an approach be used only when 
absolutely necessary. 

A. Example Application 
The examples used to obtain performance comparisons 

were highly contrived.  What about a real-world example?  
Portions of a testbench for a device transferring Ethernet 
transactions over Altera’s Avalon Streaming interface is shown 
in Figure 14.  

Here, there are actually two levels of parallelization 
happening, both with conversion involved.  The upstairs UVC 
is an Ethernet Frame Generator, producing a series of Ethernet 
transactions for each stream implemented.  The sequences are 
free running, and provide means to manage the bandwidth 
utilized by each stream individually.  The downstairs UVC 
implements the Avalon Streaming interface.  This interface 
performs segmentation and provides physical support for up to 
256 channels.  Segmentation is handled by the addition of a 
second sequencer which implements the one to many transform 
as a method of the sequencer, and provides sequence based 
arbitration between available packets.   
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Figure 14.  Testbench example 

In order to support the Ethernet packet format, the upper 
sequencer of the Avalon UVC must be extended to repackage 
the Ethernet UVC’s transaction into one native to the Avalon 
UVC.  The monitor must also be extended to provide 
translation of the reassembled Avalon transactions back to 
Ethernet transactions.  The monitor extension can be reused on 

the DUT farside, where a second instance of Avalon UVC is 
used in passive mode. 

V. SUGGESTIONS FOR FUTURE WORK 
Further efforts should be undertaken to evaluate the impact 

of return path implementation and managing multi-stream 
conversion issues on the passive (monitor) side.  Another 
concern to be addressed pertains to what standard hooks and 
methods might be incorporated in the several UVM 
components to facilitate the conversion processes cleanly.  
Finally, replication of these or similarly structured experiments 
across the several simulation platforms would be advisable. 
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