
Conscious of Streams
Managing Parallel Stimulus

Jeffrey Wilcox
Paradigm Works, Inc.

300 Brickstone Sq. Suite 903
Andover, MA, USA

jeff.wilcox@paradigm-works.com

Stephen D’Onofrio
Paradigm Works, Inc.

300 Brickstone Sq. Suite 903
Andover MA, USA

stephen.donofrio@paradigm-works.com

Abstract— Applying parallel logical streams of stimulus to a DUT
(Device Under Test) is a common verification requirement,
whether these streams are defined by physical interface signal
values, transaction content, or other characteristics. This paper
explores a set of architectural choices to be made in providing a
solution for such a requirement. Each solution is considered in
terms of measurable performance metrics, flexibility of the
solution, partitioning of functionality, and ease of management.
We will consider whether one can arrive at a single solution
reasonably suited for all situations. While the paper focuses on a
UVM (Universal Verification Methodology [1]) solution space,
the concepts are transferrable to other current high-level
verification languages.

Keywords- UVM; UVC; stacked UVC; logical streams;
architecture; performance

I. INTRODUCTION
The need to shape and deliver parallel streams of stimulus

to the DUT is a frequent issue. A best-case solution for
delivering such stimulus must balance the often conflicting
requirements of performance, flexibility, and proper
partitioning. In terms of performance, typical metrics are
image size and runtime. Primary points of concern for
flexibility include ease of managing the number of streams,
controlling each stream’s characteristics, and modifying any
arbitration algorithm. Issues of partitioning include
maintaining each verification component as independently
reusable, protecting the generally inflexible aspects of protocol
from unintended modification, and providing a reasonable user
API for managing flexible aspects of the protocol.

II. PROBLEM STATEMENT
There are several reasons one may wish to make use of

parallel, logical streams of stimulus, many of which will
impose requirements beyond the innate capabilities of most
verification languages and methodology base class
implementations. There may be a required limit on the rate at
which transactions are delivered on a particular stream. There
may be periodic operations that need to interleave with the
more general stimulus applied. There may be a need to utilize
transactions and sequences developed for a higher level of
abstraction, perhaps utilizing third party IP. Such third party IP
may provide useful sequences that one would like to be able to

apply to some other interface protocol, or simply because one
wants to maximize reuse of stimulus between system-level and
block-level testing on a component.

The base classes provided by UVM (Universal Verification
Methodology) and like methodologies have some capacity for
managing parallel streams of stimulus. There is provision for
arbitration between available sequences in a UVM sequencer,
which may be fine for default cases, but may not suffice for
more complex situations. SystemVerilog’s [2] dist constraint
type likewise provides some control over relative frequency of
one stream versus another. However, that doesn’t suit metered
delivery concept well.

What is wanted in these cases is typically an approach that
allows each logical stream to be independent of, and non-
blocking to other logical streams. These stimulus sources may
be free running throughout the operational portion of a test or
not. They may be native to the interface being tested or not.
They may be of like protocol one with another or not (example:
PCIe and Ethernet traffic protocols both being transferred
across some shared interface of the DUT, whether external or
internal.)

III. PREPARE YOUR PAPER BEFORE STYLING
Architectural choices made in developing the testbench can

have a large impact on simulation performance. These impacts
should be a driving factor in these choices. Simplicity of
testbench and test development count, but runtime for tests will
have the greater impact on schedule in the end.

Five approaches are considered, and the results compared.
The approaches consider two primary sets of choices as to how
to achieve parallelization. The first choice is whether to
achieve parallelism by forking off multiple sequences within a
single sequencer or by constructing a separate sequencer for
each stream.

When the application requires conversion from one
transaction type to another, a second choice arises as to
whether to implement conversion within the higher or lower
verification component. Such conversions may be due to
applying sequences foreign to the interface verification
component, segmentation requirements, or other issues. Here,
the choice is whether to convert in the higher or lower
verification component.

A. Basic UVC Structure
To begin with, consider the general description of a

standard UVM verification component, or UVC [3]. For
purposes of this discussion, we will consider the structure of a
UVC implementing a single agent. The typical UVM agent
consists of a sequencer for creating stimulus, a driver for
applying said stimulus to the interface wires, and a monitor for
reconstructing transactions observed on the interface. For the
purposes of this paper, any response path from driver to
sequencer is ignored.

xn
seq

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

Figure 1. UVC Structure

In Figure 1. through Figure 7. the dark green “xn” items are
transactions, and the lighter green “seq” items are sequences.
These indicate the object instances constructed at a given point
in time. For example, in Figure 1 the “seq” object is
constructed in the sequencer, and contains an “xn” object to
which both sequencer and driver have a handle. The monitor
constructs a separate “xn” object which will be forwarded out
its analysis port TLM (Transaction Level Modeling [4]) port.

The yellow “cfg” object is a single configuration object to
which all components of the agent have a handle. This object
may have variable runtime controls for the UVC, and / or state
shared between the components.

Sequences may be applied to the sequencer under direction

of the test being run, or the sequencer may be assigned a
specific sequence to be run for the duration of one or more test
phases. Sequences are typically created at the driver’s request,
and a single transaction from this sequence sent to the driver.
Thus, at any point in time there is but one sequence /
transaction on the active side of the UVC (composed of
sequencer and driver), and one on the passive (monitor) side.
This situation changes as parallel streams of stimulus are
created.

B. Where to Parallel
The first question to answer is whether to achieve

parallelism by implementing parallel sequences or parallel
sequencers. Certainly, issuing parallel sequences on a single
sequencer is the simplest to conceptualize.

1) Parallel Sequences
In Figure 2. a new sequence, main_seq, is introduced. The

body of this sequence constructs a seq instance for each logical
stream, launching each seq as a forked process, and allowing it
to run indefinitely. Note that while this sequence is shown as
issued by the UVC’s sequencer, it could as easily be running on

the testbench’s virtual sequencer. There is always one instance
of each stream’s sequence constructed. In this case, which
sequence next provides a transaction to the driver is
indeterminate, depending only on the order in which the several
streams happen to construct transactions. The driver will,
however, have handle to at most one transaction. One further
transaction instance is constructed by the monitor observing the
interface, which it provides via TLM to any interested parties.

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

xn seqxn seqxn seqxn seqxn seqxn seq
main_seq

Figure 2. UVC Implementing Parallel Sequences

Of the five methodologies considered, this approach
maintains a significant advantage for image size, and is
comparatively good in terms of runtime. Little is added to
complexity. The UVC itself requires no modifications. What
is added is a containing main sequence (shown in blue).
Beyond forking off the logical stream sequences, this sequence
may need a means to terminate the logical stream sequences
when the test’s active stimulus period (run_phase in UVM) is
complete. If arbitration is needed, it would also be
implemented in this main sequence. This avoids the need to
extend the UVC’s sequencer.

Partitioning is not ideal in this case. Arbitration and
termination of the logical stream sequences are both managed
by the main sequence. Providing separate methods within the
main sequence to implement these activities will help. The
impact is minimal, but it is something to remain aware of.

Managing the characteristics of each logical stream may
require development of unique sequences for each stream. In
many cases, a common sequence can be used by applying
constraints to fields of the sequence. This simplifies
implementation of the main sequence, but it may limit its
flexibility. The common sequence can be instanced as an
array, simplifying the main sequence. Using a dynamic array
will make selection of included streams more efficient.

Use of a common sequence is not a requirement of the
approach, then, but shows distinct advantages. Adding or
removing streams for a given test can be easily accomplished.
Including a control field in the main sequence and constraining
it as desired from the test gives a means of determining which
logical stream sequences to construct. Type of sequence to
construct, or constraints to be applied, may be fixed based on
stream number, or may be configurable by further fields in the
main sequence.

2) Parallel Sequencers

The alternative of using parallel sequences is to provide a
separate sequencer for each stream. The greater complexity of
this approach is clear from Figure 3.

arb
xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

seq

Figure 3. Using Parallel Sequencers

In Figure 3. through Figure 6. orange components require
extending the UVC component. Factory methods can be used
to replace the original components with their extended
versions.

This approach builds on the stacked UVC approach, with
the sequencer of an upper, or “upstairs” UVC connecting to a
lower, or “downstairs” UVC’s sequencer, rather than its own
driver. For this discussion, suppose upstairs and downstairs
UVCs to be of the same type. One added requirement for
stacked UVCs is a means to deconfigure the driver in the
upstairs UVC. No other modifications are required for the
upstairs UVC.

In the downstairs UVC, we must provide new TLM
connections into the sequencer component, which in turn
requires that we introduce a sequence, a sequencer method, or
some other means by which to select between those TLM
connections. The pull type nature of these connections, where
the driver requests an item which the sequencer then provides,
may impose certain restrictions on the way arbitration is
implemented. In a TDM (Time Domain Multiplexed)
application, for example, stream selection is very deterministic.
In other cases, the driver may implement some means of
indicating which stream is requested. A typical case would be
to simply arbitrate in round-robin fashion between all available
streams.

Whatever the mechanism, its implementation should take
steps to avoid creating another set of sequence or transaction
instances. Care should also be taken to avoid constantly
requesting new sequences from the upper UVCs, leading to
further unnecessary increases in image size at the beginning of
the test.

Whether it is easier to manage constructing and connecting
sequencers or whether it is easier to manage sub-sequence

construction for a given test is debatable point. If one typically
applies a default sequence to each sequencer which it runs
throughout the active portion of the test, then managing at the
sequencer may actually be more intuitive. It can be controlled
easily enough by including in the testbench environment the
same sorts of knobs that were described for the main sequence
used in the parallel sequence approach. This would impact
UVM’s build_phase and connect_phase, but is otherwise fairly
non-intrusive.

Clearly, adding parallel sequencers adds complexity. Data
shows that it will also have an adverse effect on image size and
performance. Given that complexity, why would one choose
such an approach? What advantages does it offer?

One advantage lies in the fact that we can now partition the
arbitration as a separate sequence running on a separate
sequencer, or as a method of that sequencer if the algorithm is
fixed. Having a dedicated sequencer for each stream may
simplify the nature of the sequences themselves, or increase the
opportunity for reuse of existing sequences.

The primary advantage of the approach is that it allows for
the possibility that not all streams are even of the same
fundamental type. Suppose a given logical stream may be
Ethernet or ATM traffic, and that differing third party IP is
utilized for both types. These sequences cannot easily be
supplied to a common sequencer. However, having multiple
UVCs in the upper level allows the possibility that not all
UVCs are of the same kind.

Where there is a need for multiple stimulus types, this
approach is mandated. Other situations requiring conversion
may require a stacked UVC approach, but not necessarily the
parallel instances of the upper layer suggested here.

C. Where to Convert
Supposing a need for conversion, the next question is where

conversion is to be done. We can assume at least one upstairs
UVC. This UVC may implement some protocol which
happens to be transferred across the downstairs interface. It
may simply create complete packets while the downstairs UVC
is operates on segments or fragments of these packets.

What is being done on the upstairs downstairs path likely
needs to be reversed in the monitor components of the UVCs.
This paper considers only the active, upstairs downstairs path.
Should an upstairs UVC convert to downstairs transaction
types, or should the downstairs UVC accept the upstairs
transaction type and do the conversion?

1) Downstairs Conversion
UVM advocates performing the conversion downstairs, as a

part of extending the sequencer. The changes to the parallel
sequencer approach are shown in Figure 4. Upstairs sequences
and transactions are shown in blue from here forward.

arb
xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

xn
seq sequencer

cfgcfg

seq

xn
seq
xn

seq
xn

seq
xn

seq

xn xnxnxn

Figure 4. Parallel Sequencer Implementation with Downstairs Conversion

The downstairs sequencer needs further extension.
Previously, it had been fit with TLMs to field sequences from
upstairs. Now, it must also implement whatever conversions
are required. This may be a one-to-many conversion for a
segmenting interface. It may be translating from a “foreign”
transaction type to native. While the monitor path is not in
focus in this paper, it must be observed that the monitor will
need to be extended to translate in the reverse direction. Where
segmentation is being done, this also introduces an array of
partial transactions that are not yet ready to be passed upstairs.

The primary benefit of this approach is that it limits
component modifications to the downstairs UVC. However, it
does introduce potential issues in terms of properly partitioning
operations. We still have the need for an arbitration sequence.
Now, we add the need for a sequence or method per inbound
TLM to perform the conversion. The choice of sequence or
method hinges on how fixed the operation is. If the operation
is fixed, a method is preferable, as it better hides the operation
from the user. If it is more variable, a sequence provides the
user with better control over the variability.

2) Upstairs Conversion
Given that a UVC typically translates from the higher

abstraction of a transaction class to the lower abstraction of
driven signals, it may feel more consistent to perform
conversion upstairs. This more neatly partitions the tasks
required. The upstairs UVC creates the stimulus and converts
it to the transaction type of the downstairs UVC, an activity
analogous to that of a standard driver component. The
downstairs UVC deals solely with issues of arbitration, driving
the selected transaction on the wires.

arb
xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

seq

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg
seq
xn

seq
xn

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg
seq
xn

seq
xn

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg
seq
xn

seq
xn

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg
seq
xn

seq
xn

Figure 5. Parallel Sequencer Implementation with Upstairs Conversion

The upstairs UVC is shown with a driver component in
Figure 5. Ideally this component would not be needed.
However, sequencers are strongly typed such that the
sequencer’s TLM necessarily matches the transaction type
provided by its sequences. Short of completely rewriting the
sequencer, this is not something easily changed. Thus, we
instead extend the upstairs driver, replacing its usual interface
with another TLM.

This new TLM is of the same nature as the sequencer TLM,
but takes transactions of the downstairs UVC’s type. The
driver is thus required to provide all the methods of this
request/response type TLM. Methods may be left as
unimplemented callbacks (task foo(); endtask) if one can be
certain the functionality will not be required. However,
maximum reusability will be achieved by implementing all
such methods completely.

On the passive side, all that has really happened is that the
monitor extension is done upstairs rather than downstairs. The
TLM added to the upstairs monitor is again typed for the
downstairs transaction type. This extension will need some
means of identifying which downstairs transactions belong to
its stream and which can be ignored.

This is the most complex solution to implement. It is also
the most flexible. Returning to the case of logical streams with
differing protocols, consider the conversion issue. If
conversion is done downstairs, then we must have multiple
arrays of TLM connection, each dedicated to a specific
protocol. The downstairs monitor will likewise require at least
one TLM per upstairs transaction type. Further, the transform
methods become more complex, as they now must determine
both the type being transformed and how that transform is to be
accomplished.

There is a partitioning advantage with upstairs conversion.
Each driver or monitor extension deals only with a single sort
of conversion. The downstairs UVC remains wholly agnostic
to what sort of stimulus its transactions derive from, concerned

only with arbitrating between whatever comes in, and blindly
delivering all observed results upstairs.

D. Simplification
There is nothing intrinsic to the need for conversion that

requires parallel sequencers upstairs. Both upstairs and
downstairs conversion can be done with a single upstairs UVC.
That upstairs UVC can then implement a parallel sequence
approach just like the first approach considered.

This is shown with upstairs conversion in Figure 6.

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

seq
xn

xn seq

main_seq

xn seqxn seqxn seqxn seq

xnxnxnxn

Figure 6. Parallel Sequence Implementation with Upstairs Conversion

The primary benefit is a reduction in the number of UVCs
and TLMs in our testbench, reducing overall image size. It
may also be observed that managing the response return path
on the active side is much simplified, as is the managing of
reconstruction on the monitor side.

Similar simplification can be achieved with downstairs
conversion. This will introduce the need to manage the
interface UVC sequencer extension so as to avoid allowing one
stream to block others. Again, the thing to watch is that one
does not wind up requesting an infinite series of upstairs
sequences and thus increasing the image size unnecessarily.

The case of a segmenting interface UVC can be construed
as a case for this approach, although contained in a single
UVC. This is shown in Figure 7. This could also have been
implemented as a stacked pair of UVCs. However, where
segmentation is integral to the interface this is cleaner.

arb

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg
xn

seq
sequencer
cfg

seq xn
seq
xn

seq
xn

seq
xn

seq

xn xnxnxn

Figure 7. Segmenting UVC Implementation

E. Performance Assessment
Experiments were run to compare these approaches. Each

testbench used a UVC developed by Paradigm Works and
implementing Altera’s Avalon Memory-Mapped Interface for
the downstairs UVC, and another implementing PLDA’s
EZDMA protocol for the upstairs UVC(s) when present. To
better ensure that observed variations were due to the means
used to obtain parallelism and not unrelated factors, all tests ran
transactions of one fixed size, consisting of a single phase write
to one common address. Where conversion occurred, it was
always one-to-one.

For each approach, tests were run across a matrix of
number of streams versus total number of transactions, so as to
obtain a profile of any trends. Each test was run singly on the
same machine, using the same simulator to further minimize
unrelated variation. Image size is shown in Figure 8.
Performance, normalized as CPU seconds per microsecond of
simulation time, is shown in Figure 9. In the latter case, the ten
transaction results are eliminated, as they are of limited value
beyond indicating the fixed overhead of the test. These figures
are specific to the approach of using parallel sequences with
conversion done downstairs.

Figure 8. Image Size for Parallel Sequence Implementation

Figure 9. Performance for Parallel Sequence Implementation

Of particular note, image size does not show any signs of
being impacted by parallelization of sequences. Further, while
performance clearly degrades when there is massive
parallelism, the trends are nearly identical for both the 10k and
100k run lengths. This suggests that any overhead induced
during testbench initialization is relatively small.

For the parallel sequencer implementation, image size is
shown in Figure 10. Performance is shown in Figure 11. The
downstairs conversion option is again chosen. Whether using
parallel sequences or parallel sequencers, moving conversion
upstairs does not significantly change the trends seen in these
graphs, although the specific values differ. Here, we see that
while image size is still pretty constant, there is a distinct
uptick when we arrive at the 1000 stream case.

Figure 10. Image Size for Parallel Sequencer Implementation

The situation for performance is more interesting, and
demonstrates the primary performance issue seen with parallel
sequencers: There’s a lot of zero time inertia to overcome as
the number of streams rises. Notice that at the 1000 stream
data point, the 10k performance data is more than double what

is observed at 100k. The 10 transaction measurements (not
shown) come in nearly 100x worse than the 10k. There’s a
great deal of time being spent during the build and configure
phases with this approach. That’s a factor to consider in the
architectural decision. Necessity may dictate a parallel
sequencer approach even where massive parallelism is
expected. But, there’s a huge upfront cost that applies to every
simulation run. Plan for it.

Figure 11. Performance for Parallel Sequencer Implementation

Next, we compare and contrast the five solutions in terms
of these same performance metrics. Once again, we’ll consider
image size first, shown in Figure 12. The results are much as
one would expect. Adding conversion has greater impact on
the image size than does the choice of where it is
accomplished. Barring the massively parallel cases, the cost is
pretty much the same for all conversion approaches. In these
latter cases, the parallel sequencer approach adds another
400MB or so to the image size.

Comparative performance results are shown in Figure 13.
Here, one begins to see some significant distinction between
approaches, particularly in the more parallel cases. Overall, it
appears that parallel sequences have some advantage over
parallel sequencers particularly for large-scale parallelization.

Figure 12. Methodology Comparison: Image Size

Figure 13. Methodology Comparison: Performance

Upstairs conversion, while more complex, is advantageous.
Comparing only the “Seqs – DnStrsConvert” and “Seqs –

UpStrsConvert” cases, there appears to be an inflection point in
the number of parallel streams below which doing conversion
downstairs is actually more efficient in terms of run time. Up
to and including the 200 stream test, downstairs conversion
performed better, running up to 2x faster in some cases.
However, starting with the 500 stream case, the results toggle,
and upstairs conversion begins to outperform downstairs.

It should also be noted that at these extremes, given the
more generally observed degradations in performance, the
differences are going to be felt much more strongly than in
those earlier cases. The loss of .06s/us will be felt nearly as
much as the loss of 1.1 s/us. It will depend on whether there is
any possibility that you will ever need to support so large a
number of streams. If there is one fundamental take away from
this, it is that where the potential for massive parallelization of
stimulus exists, the approach chosen becomes all that much
more critical.

IV. CONCLUSION
Based on the results obtained with regard to performance

metrics, as well as the relative complexity of the several
approaches considered, there are some conclusions that can be
drawn. First, it is clearly preferable to achieve parallelization
through sequences rather than sequencers. The issue of where
to convert is a bit murkier, but in general, downstairs
conversion is to be preferred. It provides a reasonably
straightforward means of handling conversion, and allows a
sufficient degree of partitioning. The exception would be when
massive parallelization is expected.

At the outset, we stated an interest in arriving at a universal
solution that would fit all circumstances. The nearest we have
to such a solution is that of a stacked approach utilizing parallel
sequencers with any conversion done in the upper layers.
However, this approach is also the most complex of those
considered, and the worst performer. As such, our
recommendation is that such an approach be used only when
absolutely necessary.

A. Example Application
The examples used to obtain performance comparisons

were highly contrived. What about a real-world example?
Portions of a testbench for a device transferring Ethernet
transactions over Altera’s Avalon Streaming interface is shown
in Figure 14.

Here, there are actually two levels of parallelization
happening, both with conversion involved. The upstairs UVC
is an Ethernet Frame Generator, producing a series of Ethernet
transactions for each stream implemented. The sequences are
free running, and provide means to manage the bandwidth
utilized by each stream individually. The downstairs UVC
implements the Avalon Streaming interface. This interface
performs segmentation and provides physical support for up to
256 channels. Segmentation is handled by the addition of a
second sequencer which implements the one to many transform
as a method of the sequencer, and provides sequence based
arbitration between available packets.

sequencer
cfg

xnseq

main_seq

xnseq xnseq xnseq xnseq

seq
xn

Ethernet Frame Gen

Scoreboard

DUT

xn

monitor
cfg

sequencer
cfg

driver
cfg

cfg

sequencer
cfg

xn xnxnxn
Avalon

Streaming
IF

arb
seqxnxnxnxnxn

xn

monitor
cfg

cfg
xnxnxn

Avalon
Streaming

IF

Predictor

Figure 14. Testbench example

In order to support the Ethernet packet format, the upper
sequencer of the Avalon UVC must be extended to repackage
the Ethernet UVC’s transaction into one native to the Avalon
UVC. The monitor must also be extended to provide
translation of the reassembled Avalon transactions back to
Ethernet transactions. The monitor extension can be reused on

the DUT farside, where a second instance of Avalon UVC is
used in passive mode.

V. SUGGESTIONS FOR FUTURE WORK
Further efforts should be undertaken to evaluate the impact

of return path implementation and managing multi-stream
conversion issues on the passive (monitor) side. Another
concern to be addressed pertains to what standard hooks and
methods might be incorporated in the several UVM
components to facilitate the conversion processes cleanly.
Finally, replication of these or similarly structured experiments
across the several simulation platforms would be advisable.

REFERENCES
[1] Accellera, “Universal Verification Methodology (UVM) 1.1 User’s

Guide,” Accellera Organization. Napa, CA, May 2011.
[2] IEEE, “IEEE Standard for SystemVerilog – Unified Hardware Design,

Specification, and Verification Language,” IEEE Computer Society,
New York, NY, Dec 2009.

[3] Accellera, “Universal Verification Methodology (UVM) 1.1 User’s
Guide,” Accellera Organization. Napa, CA, May 2011, pp.3–5.

[4] Open SystemC Initiative, Translaction Level Modeling Library, Release
1.0.

	I. Introduction
	II. PROBLEM STATEMENT
	III. Prepare Your Paper Before Styling
	A. Basic UVC Structure
	B. Where to Parallel
	1) Parallel Sequences
	2) Parallel Sequencers

	C. Where to Convert
	1) Downstairs Conversion
	2) Upstairs Conversion

	D. Simplification
	E. Performance Assessment

	IV. Conclusion
	A. Example Application

	V. SUGGESTIONS FOR FUTURE WORK
	References

