
CREATING USEFUL CODING GUIDELINES FOR A
VERIFICATION ENVIRONMENT

Ambar Sarkar, Principal Consulting Engineer, Paradigm Works Inc., Andover, MA

Abstract

Coding guidelines are considered useful for commercial software development
environments. However, verification engineers often fail to adopt coding guidelines as
they are not considered worth the extra effort. The author suggests that even when not
followed strictly, many of these guidelines can save the team significant time and effort in
the long run. A case study is presented, with a set of guidelines that can be used by
similar projects as a starting point.

Introduction

 Commercial software development projects adopt coding guidelines to promote
maintainability, reuse, and improved performance of the software. These guidelines are
usually a collection of coding rules that are followed by the development team. However,
due to various schedule pressures and the extra effort required to adhere to these rules,
verification engineers often perceive such guidelines as a waste of time, especially when
not strictly followed. Our experience, however, proved otherwise; the observed benefits
of adopting coding guidelines definitely outweigh the perceived disadvantages.
 For a recent verification project, we looked around for a set of coding guidelines
for the chosen hardware verification language (HVL). The HVL chosen for the project
was Vera[2,5]. We were unable to find a set of guidelines that matched our project needs.
We therefore created a set of rules based on existing guides for related languages[3,4],
our past verification and software-development experience, input from project members,
and various other sources[5].
 We soon found out that some guidelines mattered more than others. Some needed
to be modified to reflect specific project needs. Some proved vital--we couldn’t even
have linked all our code together if these guidelines were not followed. Some guidelines
helped us in handling tool issues while some others saved us time by making it easier to
debug and make code changes. In some cases, having a consistent rule was more
important than the actual convention selected. And there were a few cases where
following the guideline had no perceptible impact on our project.
 This paper relates our experiences in creating and applying Vera coding
guidelines on a real project, and identifies a set of guidelines that is a good starting point
for similar projects elsewhere. A complete list of these guidelines can be found in [1].
 The remainder of the paper is organized as follows. First, we describe the
perceived benefits and disadvantages of using coding guidelines. Second, we describe
how we derived our current set of coding guidelines. Third, we discuss the content and
organization of the coding guidelines. Finally, we describe our experiences, followed by
our conclusion.

Perceived benefits and disadvantages of using coding guidelines

 Using a well-chosen set of coding guidelines generally results in code that is
much more readable and understandable, especially to other developers when the original
developer may be unavailable. As a verification environment often uses verification IP
from different sources, enforcing specific conventions enables easier integration between
diverse components. In addition, such guidelines can help in handling idiosyncratic
language semantics and tool issues in a uniform way, while also potentially promoting
efficient coding practices.
 Choosing an appropriate set of rules is critical for a project, given the typical
negative perceptions regarding coding guidelines in a schedule-driven environment.
Adherence to coding guidelines is often perceived as a waste of time because some extra
effort may be required. Some rules may seem artificial and may seem to require extra
coding without any apparent benefit. Some rules may not even be applicable for a given
project. For legacy and externally developed software, these rules cannot be applied since
one may not wish or be able to make changes to such software. We created our rules with
all such objections in mind, and after a few revisions, we were able to agree on a set of
rules that address such issues.

Choosing coding guidelines for the verification environment

 A brief description of the verification environment follows. The design under
verification was a SOC targeted for the embedded networking applications. The design
consisted of both externally and internally developed RTL, with a significant portion of it
being external design IP. The verification environment consisted of both internally and
externally developed verification software.
 The verification team consisted of seven experienced verification engineers, with
about half of them contractors. Familiarity with a HVL varied from those who had never
used anything else other than a HDL to those who are experts in Vera. Half of the
verification team members were experienced in other HVLs. Many team members lacked
experience in object-oriented programming, while some were experts. The goal of this
team was to maintain this environment and verify a number of similar SOCs down the
road.
 The guidelines were created based on other languages similar to Vera.
Specifically, we borrowed some from C++/Java guidelines as they are object-oriented
and have many similar language constructs. We considered various guidelines suggested
in several sources such published books on Vera[2], mailing lists[5], numerous published
articles, and knowledge from experts within our company. We also received feedback
from the tool vendor regarding the coding guidelines. While we borrowed ideas that
seemed applicable to Vera, we often modified these guidelines to suit our project needs.
 We wanted to select coding guidelines that were easy to follow and intuitive.
However, adherence to the coding guidelines was not made mandatory. While it was
highly encouraged, we left it to the verification engineer to follow the guidelines. This
decision was made to ensure that one followed the guidelines because it made sense and

did not seem to require too much effort. As we observe later, following the guideline
strictly mattered more in some cases than others.

Coding guidelines contents and organization

 Each guideline was stated imperatively, followed by an explanation whenever
necessary. Next an example that illustrated the rule was provided. A summary of these
rules is presented in Table 1. The complete guidelines can be found in [1].

Guideline

Guidelines

Category 1) Programming Methodology Guidelines
CG1 Declare a class type and the implementation of its methods (tasks and functions)

separately
CG2 All class data members should be declared local or protected.
CG3 Never use constant literals directly in the code.
CG4 Always use virtual ports and pass bind names as references into tasks
CG5 Do not sample signals in expressions
CG6 Remember object handles and not the objects are passed as arguments in Vera
CG7 Avoid unnecessary use of non-blocking drives in testbench code
CG8 Always use skew when sampling or driving signals into the DUT.
CG9 Do not rely on the order of execution of threads.
CG10 Avoid shared variables across multiple threads, use shadow variables whenever

feasible.
CG11 Always check returns for system calls such as alloc, new

Category 2) Naming Programming Constructs
CG12 Use Hungarian notation for all names except for macros and enumerated constants.

CG13 Use uppercase and underscores for all macros and enumerated constants.
CG14 Use upper case for the first letter of the name of each type declaration..
CG15 Use lower case for the first letter of any variable
CG16 Use lower case for the first letter of any bind instantiation
CG17 Name tasks or functions appropriately.
CG18 Give meaningful name to the task or function arguments in prototype declarations
CG19 Use appropriate suffixes for class names of the verification components.
CG20 Use unique names for enumerated constants.
CG21 Use appropriate conventions when naming interfaces, virtual ports and port

bindings.
CG22 Use appropriate naming conventions for static and shared objects.
CG23 Use appropriate naming conventions for global variables.

Category 3) File Organization
CG24 Generate header files automatically for classes.
CG25 Every file should have the standard file header at the top.
CG26 Define one class per file, especially for large classes
CG27 Name the file based on that class.
CG28 Every header file, including class definition files, must have a read-once latch.
CG29 Keep port declarations with the class that uses that port as a parameter in its

methods
CG30 Keep bind declarations in files that pass binds as parameters to tasks.
CG31 Avoid unnecessary #include’s
CG32 All RTL hierarchy paths should be declared in a separate header file.
CG33 Use appropriate filename extension conventions.

Category 4) Error And Debug Messaging
CG34 Use a standard format for all error messages.
CG35 Use a standard debug message format.

Category 5) Performance Considerations
CG36 Minimize use of dynamic binding to ports (using signal_connect).
CG37 Avoid using associative arrays for ranges of less than 1000 elements.

Table 1. Summary of Vera coding guidelines

 The guidelines were grouped roughly into the following five categories:

Category 1) Programming Methodology
 These rules suggest how the HVL code should be organized, as well as rules on
using specific HVL constructs. Most of these rules are primarily applicable to Vera,
though similar rules may be adopted by other HVLs . Here is an example of such a rule:

Rule: Do not sample signals in expressions
Explanation: According to Vera semantics, a signal is sampled immediately (asynchronously) if it is
embedded in an expression. If not embedded in an expression, the signal is sampled in the next clock edge.
Since in general most sampling is done synchronously, sampling asynchronously may lead to race
conditions and therefore unexpected behavior. Therefore, it is recommended that one separate the sampling
of a signal from its use.
Example:
 Instead of :
 dataPls1 = dut.$Data + 1'b1;
 Use:
 data = dut.$Data;
 dataPls1 = data + 1;

Category 2) Naming Programming Constructs
 These guidelines recommend how to name various Vera programming constructs.
Most of these rules were derived from guidelines in other programming languages such
as C++/Java. An example of such a rule is given below:

Rule: Use appropriate suffixes for class names of verification components. The following siffixes are
recommended:
 Bfm for Bfm objects. Eg. Spi4Bfm
 Chkr for Checker objects. Eg. Spi4Chkr
 Mntr for Monitor objects. Eg. AhbMtr
 Cvg for Coverage objects. Eg. UsbCvg

Category 3) File Organization
 This category recommends how to organize the code among various files. It also
includes suggestions for naming various files, their suffixes, and helpful compilation
conventions. Many of these rules were tool specific. Here are a couple of examples:

Rule: Define one class per file, especially for large classes.
Explanation: This principle improves code readability, and avoids unnecessary recompilations.

Rule: Name a file based on the class it defines.
Explanation: This rule helps in quickly identifying which file contains what class.

Category 4) Error and Debug Messaging
 This category specifies error and debug message formats as well as their contents.
These rules are independent of the HVL. Here is an example:

Rule: The following format is recommended for error messages:
 [Timestamp] <ErrorType>: ObjectName:<tab> Message summary in one line
 <Details>

Example:
 [120333] ERROR: Dma Channel 1: Failed to see DONE_
 Dma Status Register Contents:

Category 5) Perfomance Considerations
 This category covers rules that had potential impact on the tool performance.
Examples are rules for hooking up the testbench with the RTL, suggestions on choice of
appropriate data structures, etc. We had few rules in this category, primarily because
further analysis of the verification code was needed to identify appropriate rules. As a
start, we had a couple of rules suggested by the vendor. Here is an example:

Rule: Minimize use of dynamic binding to ports (using signal_connect).
Explanation: Use static binding (using interfaces) instead, whenever feasible. The static interface method
uses the direct kernel access routines which are faster. If one does not need to dynamically change the
binding of a port, using interface files is preferable.

Experiences with coding guidelines

 Table 2 provides a summary of our experiences over a span of about ten months.
For each adopted guideline, it specifies how strictly each guideline was followed, as well
as whether adherence to the guideline proved useful.
 A rule was considered to have been followed strictly when the verification
engineer generally followed the rule with very few exceptions. A rule was considered to
have been followed reasonably if it was followed at least half of the time. Otherwise, we
considered the rule to have been abandoned.
 A rule was considered useful if we felt like we saved time in the long run or if we
lost some time unnecessarily by not following it. On the other hand, even if a rule appears
useful at first glance, but our project did not seem to take advantage of it, we considered
it belonging to the “Does not matter” category.
 Among the thirty-seven guidelines, thirteen were strictly adhered to. Fifteen were
adhered to reasonably well, though there were some exceptions. The remaining seven
were not followed much. In terms of usefulness, about twenty-one rules proved extremely
beneficial in our project, while eight proved to be fairly useful. Out of these twenty-one
rules, two were not followed but were discovered to be fairly beneficial in hindsight. The
remaining ten proved not to be of use within our project, but may have been useful in
other environments.

Experience with Programming Methodology Guidelines
 The programming methodology guidelines were useful in helping the relative
newcomers to Vera. The guidelines helped them to avoid some of the common pitfalls
that such a user can make. An example was CG5, which recommends that the signals
should not be sampled in expressions. In Vera, sampling signals in expressions causes the
signals to be sampled asynchronously, which could have caused unintended race
conditions between the sampled event and the remaining testbench activities. As most of
our observed events were synchronized to a clock, by adopting CG5 we were able to
avoid any such confusion.

Table 2. Summary of experiences

 Another example of a very useful programming guideline was CG11. This rule
specified that one should always check the result of a system call, whenever possible.
While this is a fairly common-sense rule, it required some extra work on the
programmer's part. Some of them decided to skip the check on some system calls that
seemed fairly robust. Unfortunately, as it turned out, one of our verification IP providers
changed some of their constraint class names in a new release. Once we upgraded to this
release, things stopped working mysteriously. This wasted about one day’s worth of a
single verification engineer before we realized the problem, as it wasn't obvious where
the failure occurred. Regardless of the actual source of the problem, adhering to CG 11
strictly would have saved us significant time.

Guideline # Adherence Benefits

Strict

Reasonable

None

Very

Somewhat
Does

not matter
Category 1) Programming Methodology Guidelines

CG1 Y Y
CG2 Y Y
CG3 Y Y
CG4 Y Y
CG5 Y Y
CG6 Y Y
CG7 Y Y
CG8 Y Y
CG9 Y Y
CG10 Y Y
CG11 Y Y

Category 2) Naming Programming Constructs
CG12 Y Y
CG13 Y Y
CG14 Y Y
CG15 Y Y
CG16 Y Y
CG17 Y Y
CG18 Y Y
CG19 Y Y
CG20 Y Y
CG21 Y Y
CG22 Y Y
CG23 Y Y

Category 3) File Organization
CG24 Y Y
CG25 Y Y
CG26 Y Y
CG27 Y Y
CG28 Y Y
CG29 Y Y
CG30 Y Y
CG31 Y Y
CG32 Y Y
CG33 Y Y

Category 5) Error And Debug Messaging
CG34 Y Y
CG35 Y Y

Category 6) Performance Considerations
CG36 Y Y
CG37 Y Y

 Interestingly, CG2 proved to be one that did not seem to matter in practice. It
required all member variables of a class to be declared local or private, and required one
to define access methods for each variable. This ensured that any user of the object would
obtain a handle to the variable through an access method. By doing so, one can prevent
any external class from accessing any variable without the parent class being aware of it.
 In practice, however CG2 proved to be more strict than necessary. Instead, the
programmer decided which variables were better declared private, and the rest were left
declared as public. By picking carefully which variables should or should not be exposed
for access to other objects, we still followed the principle of information hiding, while
saving extra typing that the rule required.

Experiences with Naming Programming Construct Guidelines
 The rules in this category were quite useful for the reason of code readability and
maintainability. While few rules in this category were strictly followed, majority were
followed reasonably well. The key point was to choose consistent and meaningful names
for these constructs. Such names helped in quickly grasping the functionality of each
object.
 An example of extremely useful guideline is CG20, which required giving unique
names for enumerated constants. This enabled us to integrate with verification IP from
multiple sources without any fear of name-space collisions.
 Some of the coding guidelines ended up not mattering much as they were not
followed strictly. CG16, CG21, and CG22 dictated rules regarding how exactly to name
various Vera type instances so that one could easily understand the exact type and
function of the object from its name. In practice, since these rules were not followed
strictly, one had to always look up the objects context to determine its true functionality.
 In summary, while most of the rules related to naming constructs are useful, some
of them are rendered useless if not followed strictly. Some guidelines, such as CG13,
CG17, CG18, and CG20 are still very useful even when they are not followed strictly.

Experiences with File Organization Guidelines
 The rules on file organization were extremely beneficial. We would not have been
able to compile and link all the verification code from various verification IP vendors
with our own code easily without CG24, CG28, CG29, and CG33. The primary
advantage of these guidelines was being able to compile and link verification related
software from various sources.
 The guidelines CG24, CG28, and CG33 were critical for creating common scripts
that compiled and linked all our code. For example, CG28 ensured that the contents of an
include file did not get included more than once even if the file itself was included more
than once in the hierarchy of include path of a file.
 CG29 and CG30 would have been useful in avoiding unnecessary recompilations
whenever changes were made to the interface files or the associated pin names in the
RTL. Specifically, CG30 made sure that if there were changes in the RTL pin names,
these caused recompilation in only those files that included the interface declarations.
Unfortunately, this rule was not strictly followed, causing many unnecessary

recompilations in the early stages of the project, when the various port and signal names
were not fully decided upon.
 Some guidelines did not matter much. For example, CG31 required that one avoid
unnecessary includes, as they would cause unnecessary recompiles. In the sophisticated
software environment that we were using, it was often a significant amount of effort
trying to identify which ones were strictly necessary and which weren't. CG32 required
that all HDL path hierarchies be separated into one file. In practice, having the interface
file contain any reference to the HDL paths effectively performed this task, so it was not
necessary to create yet another file with just the HDL paths.

Experiences with Error and Debug Messaging Guidelines
 These rules primarily recommend the format for error and debug messages. The
format for error messaging proved fairly useful, as it let us write automated scripts that
quickly identified the failures from the log files. On the other hand, the debug messaging
format was not used much, even though convenient APIs and classes were provided to
make it easier to follow. Interestingly, the programmers chose to use printf statements
and deleted or commented the printfs when they felt they had debugged the problem
satisfactorily.

Experiences with Performance Consideration Guidelines.
 We did not have many rules in this category. Rules CG36 and CG37 were
recommendations by the tool vendor. CG36, which recommended how to hook up the
HDL with Vera, was adopted and had saved us some time according to the Vendor.
 Interestingly, CG37, which recommended avoiding the use of associative arrays
for small, non-sparse ranges was not followed in spite of potential performance
consequences. This was done for a couple of reasons. First, it is a convenient construct to
use in many situations where the exact size of the array may not be known, but array
itself was not sparse. Second, it was premature to think about optimization without doing
an overall performance analysis and addressing the bigger bottlenecks first.

Conclusions

 Coding guidelines are essential for verification projects. These rules help us work
around tool limitations, handle language idiosyncrasies, integrate software from diverse
sources, and improve maintainability of the verification software. However, it is
important to realize that depending on the project, some rules may be more important
than others. While some rules are not beneficial if not followed strictly, we note that
many rules provide value even if they are followed to some extent. Failure to adhere to
some of these rules can cost the team significant time, and the benefits observed easily
justify the effort spent in adhering to the guidelines.

 Acknowledgements

 I would like to express my sincere thanks to the NetSilicon verification team,
Synopsys, and my Paradigm Works colleagues for their various insights and feedback.

References

1. Vera Coding Guidelines , Paradigm Works, Inc., Dec 2002
http://www.paradigm-works.com/technology/vera-coding-guidelines.pdf

2. Art of Verification with VERA, Haque, Khan, Michelson, Verification Central,
Sept 2001

3. Programming in C++, Rules and Recommendations, Henricson and Nyquist,
Ellemtel Telecommmunications Systems Laboratories, 1992

4. Code conventions for the Java programming language, Sun Microsystems,
http://java.sun.com/docs/codeconv/

5. OpenVera website: http://www.open-vera.com

