

Paradigm Works Inc.
Proprietary and Confidential

 Crossing the Abyss
 Asynchronous Signals in a Synchronous World

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 2 of 28
 Proprietary and Confidential

Table of Contents
1 Introduction...5
1.1 Fundamentals ..5
1.2 Signal Synchronization ..7
1.3 Synchronizer Circuits...8
1.3.1 Level Synchronizer..8
1.3.2 Edge-Detect Synchronizer...8
1.3.3 Pulse Synchronizer..10
2 Design Methodologies..13
2.1 Handshaking ..13
2.1.1 Full Handshaking ...13
2.1.2 Partial Handshaking...15
2.1.2.1 Partial Handshake Technique I ...15
2.1.2.2 Partial Handshake Technique II ..17
2.2 Data Path Design ...18
2.2.1 Basic Data Path Design ..19
2.2.2 Advanced Data Path Design ...20
2.2.2.1 Counter Based FIFO Status ..22
2.2.2.2 Pointer Compare FIFO Status ...23
3 Conclusion ...27
4 References ...28

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 3 of 28
 Proprietary and Confidential

List of Figures
Figure 1-1: Metastable Output ...5
Figure 1-2: Stable Window..6
Figure 1-3: Synthesis Timing Calculation ..6
Figure 1-4: A Simple Synchronizer...7
Figure 1-5: Full Synchronizer Circuit...7
Figure 1-6: Synchronizer Timing ..8
Figure 1-7: Edge-Detect Synchronizer..9
Figure 1-8: Rising Edge-Detect Synchronizer Timing ..9
Figure 1-9: Falling Edge-Detect Synchronizer Timing...10
Figure 1-10: Pulse Synchronizer...10
Figure 1-11: Pulse Synchronizer Timing ..11
Figure 2-1: Handshake Circuit ...13
Figure 2-2: Full Handshake Signaling..13
Figure 2-3: Full Handshake Flow ...14
Figure 2-4: Partial Handshake I Signaling...15
Figure 2-5: Partial Handshake I Flow..16
Figure 2-6: Partial Handshake II Signaling ...17
Figure 2-7: Partial Handshake II Flow...17
Figure 2-8: Data Path Synchronizer Diagram..19
Figure 2-9: Data Path Timing Using Full Handshake ...19
Figure 2-10: Data Path Timing Using Partial Handshake...20
Figure 2-11: Four-Entry FIFO..21
Figure 2-12: Dual Counter FIFO Status...22
Figure 2-13: Gray Code Pointer Compare FIFO Status ...25
Figure 2-14: Gray Code Counter...25

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 4 of 28
 Proprietary and Confidential

List of Tables
Table 1-1: Synchronizer Summary ...11
Table 2-1: Handshake Summary ..18
Table 2-2: Binary to Gray Code ..24

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 5 of 28
 Proprietary and Confidential

1 Introduction
Logic circuits having a single clock are the most elementary type of digital design. The reality is that
modern digital designs are increasingly sophisticated; having multiple clocks driving different
circuits and circuits that must reliably communicate with each other. Most data movement
applications such as disk drive controllers, CDROM/DVD controllers, modems, network interfaces
and network processors, have multiple clock domains and bear inherent challenges moving data
across clock domains.
In modern IC, ASIC and FPGA designs, the engineer has many software programs to help create
million gate circuits, but these programs cannot solve the problem of signal synchronization. When
signals travel from one clock domain to another, the signal appears to be asynchronous in the new
clock domain. Since the engineer�s toolbox does not have the tools to handle this situation, it is up
to the designer to know reliable design techniques that reduce the risk of failure for circuits
communicating across clock domains.
This paper explores the fundamentals of signal synchronization and demonstrates circuits a
designer can use to handle signals that cross clock domains. It examines design methodologies for
synchronizing single signals and ways of handling groups of signals including data busses that
cross clock domains.

1.1 Fundamentals

The first step in managing multi-clock designs is to understand the problem of signal stability. When
a signal crosses a clock domain, it appears to be an asynchronous signal to the circuitry in the new
clock domain. The circuit that receives this signal needs to synchronize it. Synchronization prevents
the metastable state of the first storage element (flip-flop) in the new clock domain from
propagating through the circuit.

Clock

metastable

Output

Input

Figure 1-1: Metastable Output

Metastability is the inability of a flip-flop to arrive at a known state in a specific amount of time.
When a flip-flop enters a metastable state, a designer cannot predict the element�s output voltage
level nor when the output will settle to a correct voltage level (see Figure 1-1: Metastable Output).
During this settling time, the flip-flop�s output is at some intermediate voltage level or may oscillate
and can cause a cascade of failures when the flip-flops further down the signal path capture the
invalid output level.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 6 of 28
 Proprietary and Confidential

Q

Q
SET

CLR

DData

Clock

 stable window

Data

Clock

Output

Figure 1-2: Stable Window

For any flip-flop, there is a small window of time where the input must be stable (see Figure 1-2:
Stable Window). This window of time is a function of the design of the flip-flop, the implementation
technology, operating conditions and the load on the output for outputs not buffered. Also sharp
edge rates on the input signal minimize the window of time. The probability of a flip-flop entering a
metastable state is also a function of the data and clock frequencies. There are more windows of
vulnerability as the clock frequency goes up and there is greater probability of hitting the window as
the data frequency goes up.
FPGA manufacturers and IC foundries qualify their flip-flops and determine their characteristics.
Mean Time Between Failures (MTBF) describes the metastability characteristic of a flip-flop using
statistics to determine the probability of a flip-flop failure. The MTBF is based in part on the length
of the time window during which a change in the input signal causes the flip-flop to become
unstable. In addition, MTBF calculation uses the frequency of the input signal and the frequency of
the clock driving the flip-flop.
Each different type of flip-flop in an ASIC library or in a type of FPGA has timing requirements that
help the designer determine the window of vulnerability. Setup time describes the time an input
signal to a flip-flop must be stable before the clock edge and the hold time is the time the signal
must remain stable after the clock edge. These are very conservative times to account for all the
possible variations in supply voltage, operating temperature, signal quality and fabrication
variations. If a design meets these timing requirements, the possibility of the flip-flop failing is so
small it is negligible.

Q

QSET

CLR

DData

Clock1

Q

QSET

CLR

D Outputcombinational
logic

Clock2

metastable combinational
delay

setup
time

Figure 1-3: Synthesis Timing Calculation

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 7 of 28
 Proprietary and Confidential

Synthesis programs that engineers use in modern IC and FPGA designs, ensure digital circuits
meet the setup and hold requirements for each flip-flop in the design, but asynchronous signals
pose problems for the software. A signal crossing a clock domain appears to be asynchronous to
the logic in the new clock domain. Most synthesis programs have trouble solving the problem of
determining if asynchronous signals meet the timing requirements for flip-flops. Synthesis
programs cannot determine the time the flip-flop is unstable, and so they cannot determine the total
delay from the flip-flop, through the combinational logic to the next flip-flop (see Figure 1-3:
Synthesis Timing Calculation). Since synthesis software cannot handle signal synchronization, the
designer uses circuits that mitigate the impact of asynchronous signaling.

1.2 Signal Synchronization

Q

QSET

CLR

DData

Clock

Q

QSET

CLR

D Output

Figure 1-4: A Simple Synchronizer

Synchronizing signals begins by protecting downstream logic from the metastable state of the first
flip-flop in a new clock domain. A simple synchronizer consists of two flip-flops in series without
combinational circuitry between them (see Figure 1-4: A Simple Synchronizer). This design
ensures the first flip-flop exits its metastable state and its output settles before the second flip-flop
samples the first one�s output.
Besides the circuit design, there is another requirement to make a successful synchronizer. The
layout engineer needs to place the flip-flops close to each other. This guarantees the shortest
signal wire between the output of the first flip-flop and the input of the second one and ensures the
smallest possible clock skew between the flip-flops.
IC foundries help with signal synchronization by providing specially designed synchronizer cells.
Usually this synchronizer cells consists of a flip-flop with a very high gain that uses more power and
is larger than a standard flip-flop. This flip-flop has reduced setup and hold time requirements for
the input signal and is resistant to oscillating when input signal causes a metastable condition.
Another type of synchronizer cell contains two flip-flops, which eases the layout engineer�s job by
meeting the requirement of placing the flip-flops close to each other and prevents the designer from
placing any combinational logic between the flip-flops.

Clock1 Domain Clock2 Domain

Q

QSET

CLR

D

Clock2

Q

QSET

CLR

D Output

Q

QSET

CLR

DData

Clock1

No combinational logic here

Figure 1-5: Full Synchronizer Circuit

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 8 of 28
 Proprietary and Confidential

For synchronization to work properly, the signal crossing clock domains comes from a flip-flop in
the original clock domain. It does not pass through any combinational logic between the originating
flip-flop and the first flip-flop of the synchronizer (see Figure 1-5: Full Synchronizer Circuit). This is
important because the first stage of a synchronizer is sensitive to glitches that combination logic
produces. If a glitch is long enough and occurs at the correct time, it could meet the setup and hold
requirements of the first flip-flop in the synchronizer. This leads to the synchronizer passing a false
valid indication to the rest of the logic in the new clock domain. Another consideration when using
synchronizers is signal delay.

Clock

Input

Clock

Output

MAX: two clocks

Input

Output

MIN: > one clock

Figure 1-6: Synchronizer Timing

A synchronized signal is valid in the new clock domain after two clock edges. The signal delay is
between one and two clock periods in the new clock domain (see Figure 1-6: Synchronizer
Timing). A rule of thumb is a synchronizer circuit causes two clock cycles of delay in the new clock
domain and a designer needs to consider how synchronization delay impacts timing of signals
crossing clock domains.

1.3 Synchronizer Circuits

There are many different designs for synchronizers and each has specific uses because one type
does not work well in all applications. All synchronizers use the basic circuit shown in Figure 1-4
and fall into three basic categories: level, edge-detect and pulse.

1.3.1 Level Synchronizer

The circuit in Figure 1-4 is a level synchronizer where the signal crossing clock domains stays high
and low for more than a two clock cycles in the new clock domain. A requirement of this circuit is
that the signal needs to transition to its invalid state before it can become valid again. Each time the
signal goes valid, the receiving logic considers it a single event no matter how long the signal
remains valid. This circuit is the heart of all other synchronizers as in the edge-detect synchronizer.

1.3.2 Edge-Detect Synchronizer

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 9 of 28
 Proprietary and Confidential

Basic Synchronizer

Q

QSET

CLR

D
Output

Q

QSET

CLR

D

Q

QSET

CLR

D

Clock2

Data
A
B

Figure 1-7: Edge-Detect Synchronizer

Figure 1-7 shows the edge-detect synchronizer circuit, which adds a flip-flop to the output of the
level synchronizer. The output of the additional flip-flop is inverted and �AND�-ed with the output of
the level synchronizer. This circuit detects the rising edge of the input to the synchronizer and
generates a single clock wide active high pulse. Switching the inverter on the �AND� gate inputs
creates a synchronizer that detects the falling edge of the input signal. In addition, changing the
AND gate to a NAND gate results in a circuit that generates an active low pulse.

Clock2

Input

AND (A)

Clock1

Output

AND (B)

Figure 1-8: Rising Edge-Detect Synchronizer Timing

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 10 of 28
 Proprietary and Confidential

Clock2

Input

AND (A)

Clock1

Output

AND (B)

Figure 1-9: Falling Edge-Detect Synchronizer Timing

The edge-detect synchronizer�s main application is synchronizing a pulse going to a faster clock
domain. This circuit produces a pulse that indicates the rising (or falling) edge of the input signal.
Figure 1-8 and Figure 1-9 show the circuit�s timing for rising edge and falling edge detection
respectively.
A restriction on the application of this synchronizer is the width of the input pulse must be greater
than the period of the synchronizer clock plus the required hold time of the first synchronizer flip-
flop. The safest pulse width is twice the synchronizer clock period. This synchronizer does not work
if the input is a single clock-wide pulse going to a slower clock domain; however, the pulse
synchronizer solves this problem.

1.3.3 Pulse Synchronizer

Basic Synchronizer

Q

Q
SET

CLR

D

Data

Clock1

Q

Q
SET

CLR

D
Output

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Clock2

Toggle Circuit
(Clock1 Domain)

A
B0

1
Toggle

Figure 1-10: Pulse Synchronizer

Figure 1-10 shows the pulse synchronizer. The input signal is a single clock cycle wide pulse that
triggers a toggle circuit in the originating clock domain. The output of the toggle circuit is a signal
that switches from high to low and vice versa each time it receives a pulse. This signal passes
through the level synchronizer and arrives at one input of the �XOR� gate while a one clock cycle

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 11 of 28
 Proprietary and Confidential

delayed version goes to the other input of the �XOR�. For one clock cycle, each time the toggle
circuit changes state the output of this synchronizer goes high.

Clock1

Input

Clock2

Output

Toggle

XOR(A)

XOR(B)

Figure 1-11: Pulse Synchronizer Timing

The basic function of a pulse synchronizer is to take a single clock wide pulse from one clock
domain and create a single clock wide pulse in the new domain. Figure 1-11 shows the
synchronizer�s timing.
One restriction on this synchronizer design is the input pulses must have a minimum time between
them. This minimum spacing between the pulses is equal to two synchronizer clock periods. If the
input pulses are closer, the output pulses in the new clock domain are adjacent to each other
resulting in an output pulse that is wider than one clock cycle. This is a more severe problem when
the clock period of input pulse is greater than twice the synchronizer clock period. In this case, if the
input pulses are too close, the synchronizer does not detect every one.

Type Application Input Output Restriction
Level Synchronizes level

signals
Level Level Input must be valid for at least

two clock periods in the new
domain.

Each time output goes valid,
counts as a single event.

Edge-
detect

Detects rising or
falling edge of input

Level
or

Pulse

Pulse Input must be valid for at least
two clock periods in the new

domain.
Pulse Synchronizes single

clock-wide pulses
Pulse Pulse Input pulses must be spaced by at

least two clock periods in the new
domain.

Table 1-1: Synchronizer Summary

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 12 of 28
 Proprietary and Confidential

Table 1-1 show the synchronizers described above, their application, the type of output and the
restriction on how a designer uses them. There are other synchronizer designs but these serve
most applications a designer encounters.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 13 of 28
 Proprietary and Confidential

2 Design Methodologies
Synchronizers are the most basic tools that an engineer uses to handle signals crossing clock
domains. However, an engineer also needs to know protocols that circuits use when they
communicate with each other asynchronously. In many applications, simple signals are not the
only information crossing clock domains; data and control busses also travel together across
domains. Engineers have additional tools at their disposal that can handle these situations, such as
handshaking protocols and FIFOs.

2.1 Handshaking

Handshaking allows digital circuits to effectively communicate with each other when the response
time of one or both circuits is not predictable. An example that most designers have encountered is
an arbitrated bus. Here more than one circuit requests access to a single bus (i.e., PCI, AMBA),
and arbitration determines which circuit gains access to the bus. Each circuit signals a �request�
and the arbitration logic determines which of the requesters is the �winner�. The winning requester
receives an �acknowledge� that indicates it has access to the bus, it discontinues its request and
begins the bus transaction.

Circuit A
Request

Acknowledge

Circuit B

Figure 2-1: Handshake Circuit

The response time of circuits in different clock domains is not predictable because of
synchronization so handshake signaling is a very effective means of communication between
them. Full and partial handshake signaling are the two fundamental types of handshake protocol.
Each type of handshake uses the synchronizers described above, and each has its own set of
design trade-offs. To illustrate the various handshake protocols, the diagram in Figure 2-1 shows
two circuits and the signals between them. Circuit A controls the Request signal, Circuit B controls
the Acknowledge signal, and each handshake protocol is examined using this diagram.

2.1.1 Full Handshaking

Request

Acknowledge

Figure 2-2: Full Handshake Signaling

Full handshake signaling means the two circuits wait for each other before asserting or dropping
their respective handshake signal. The way this protocol works is first Circuit A asserts its request
signal. Next, Circuit B detects that the request signal is valid and asserts its acknowledge signal.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 14 of 28
 Proprietary and Confidential

When Circuit A detects that the acknowledge signal is valid, it drops its request signal. Finally when
Circuit B detects that the request is invalid, it drops its acknowledge signal (see Figure 2-2: Full
Handshake Signaling). Circuit A does not make a new request until it detects that the acknowledge
signal is invalid.
This type of handshake uses level synchronizers. A designer uses this technique when Circuit B
(the acknowledging circuit) needs to inform Circuit A (the requesting circuit) that it is actively
processing the request. This handshake requires that the requesting circuit hold off its next request
until it detects that the acknowledge signal is invalid. The following is a detailed description and
timing for full handshake signaling.

assert Request

2 clocks

Circuit B
(clock domain B)

Circuit A
(clock domain A)

assert Acknowledge

1 clock

2 clocks

1 clock de-assert Request

2 clocks

1 clock

de-assert Acknowledge
2 clocks

Total: 5 clocks Total: 6 clocks

1

2

3

4

5

6

7

8

Figure 2-3: Full Handshake Flow

Use the rules of thumb that signals take two clock cycles to cross a clock domain and circuits
register signals before they cross clock domains. The sequence and timing for this type of
handshake is (see Figure 2-3: Full Handshake Flow):

1. Circuit A asserts Request (in clock domain A).
2. Circuit B detects Request two clocks later (in clock domain B).
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge.
4. Circuit A detects Acknowledge two clocks later (in clock domain A).
5. In the next clock cycle (domain A), Circuit A de-asserts Request.
6. Circuit B detects Request two clocks later (in clock domain B).
7. In the next clock cycle (domain B), Circuit B de-asserts Acknowledge.
8. Circuit A detects Acknowledge two clocks later (in clock domain A).

Here, the complete sequence takes a maximum of 5 cycles in the A clock domain plus a maximum
of 6 cycles in the B clock domain.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 15 of 28
 Proprietary and Confidential

With full handshake, each circuit explicitly knows the state of the other by examining the request
and acknowledge signals, making full handshake signaling very robust. The drawback with this
scheme is the entire process takes time. Partial handshaking is another signaling technique that
shortens this sequence of events.

2.1.2 Partial Handshaking

With partial handshake signaling, the two circuits communicating with each other do not wait for the
other one before dropping their respective signal and continuing with the handshake sequence.
Partial handshaking is less robust than full handshaking but the complete handshake cycle is
faster. It is less robust because the handshake signals do not indicate the state of the both circuits
so the designer needs ensure the circuit saves state information normally present in full handshake
signals. By not waiting until the other circuit drops it handshake signal, the whole sequence of
events is shorter.
When using partial handshake signaling, the acknowledging circuit must generate its signal at the
correct time. If the acknowledging circuit needs to complete processing the request before it can
handle another, then the timing of the acknowledge signal is important. The circuit uses its
acknowledge signal to indicate when it completed any processing. There two partial handshake
schemes, one that mixes level and pulse signaling and the other that uses pulse signaling only.
2.1.2.1 Partial Handshake Technique I

Request

Acknowledge

Figure 2-4: Partial Handshake I Signaling

In the first partial handshake scheme, Circuit A asserts its request signal and the Circuit B
acknowledges it with a single clock-wide pulse. In this case, Circuit B does not care when Circuit A
drops its request signal. However, to make this technique work, Circuit A must drop its request
signal for at least one clock cycle otherwise Circuit B cannot distinguish between the previous and
the new request.
With this handshake, Circuit B uses a level synchronizer for the request signal and Circuit A uses a
pulse synchronizer for the acknowledge signal. In this handshake protocol the acknowledge pulses
only occur when Circuit B detects the request signal. This allows Circuit A to control the spacing of
the pulses into the synchronizer by controlling the timing of its request signal. The following is a
detailed description and timing for this type of partial handshake signaling.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 16 of 28
 Proprietary and Confidential

assert Request

2 clocks

Circuit B
(clock domain B)

Circuit A
(clock domain A)

assert Acknowledge

1 clock

2 clocks

1 clock de-assert Request

2 clocks

Total: 3 clocks Total: 5 clocks

1

2

3

4

5

6

Figure 2-5: Partial Handshake I Flow

Once again, use the rules of thumb that signals take two clock cycles to cross a clock domain and
circuits register signals before they cross clock domains. The sequence and timing for this type of
handshake is (see Figure 2-5: Partial Handshake I Flow):

1. Circuit A asserts Request (in clock domain A).
2. Circuit B detects Request two clocks later (in clock domain B).
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge.
4. Circuit A detects Acknowledge two clocks later (in clock domain A).
5. In the next clock cycle (domain A), Circuit A de-asserts Request.
6. Circuit B detects Request two clocks later (in clock domain B).

Here, the complete sequence takes a maximum of 3 cycles in the A clock domain plus a maximum
of 5 cycles in the B clock domain. This partial handshake signaling uses 2 less clock cycles in the A
clock domain and 1 less clock cycle in the B clock domain than full handshake signaling. The
complete sequence can be shorter by a few more clock cycles by using the following partial
handshake technique.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 17 of 28
 Proprietary and Confidential

2.1.2.2 Partial Handshake Technique II

Request

Acknowledge

Figure 2-6: Partial Handshake II Signaling

In this second partial handshake scheme, Circuit A asserts it request with a single clock-wide pulse
and Circuit B acknowledges it with a single clock-wide pulse. In this case, both circuits need to
save state to indicate that the request is pending.
This type of handshake uses pulse synchronizers but if one circuit has a clock that is twice as fast
as the other, that circuit can use an edge-detect synchronizer instead. The following is a detailed
description and timing for this type of partial handshake signaling.

assert Request

2 clocks

Circuit B
(clock domain B)

Circuit A
(clock domain A)

assert Acknowledge

1 clock

2 clocks

Total: 2 clocks Total: 3 clocks

1

2

3

4

Figure 2-7: Partial Handshake II Flow

Once again, use the rules of thumb that signals take two clock cycles to cross a clock domain and
circuits register signals before they cross clock domains. The sequence and timing for this type of
handshake is (see Figure 2-7: Partial Handshake II Flow):

1. Circuit A asserts Request (in clock domain A).
2. Circuit B detects Request two clocks later (in clock domain B).
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge.
4. Circuit A detects Acknowledge two clocks later (in clock domain A).

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 18 of 28
 Proprietary and Confidential

Here, the complete sequence takes a maximum of 2 cycles in the A clock domain plus a maximum
of 3 cycles in the B clock domain. This partial handshaking technique uses 3 less clock cycles in
the A clock domain and 3 less clock cycle in the B clock domain than full handshake signaling. This
technique is also faster than the first partial handshake signaling by one cycle in the A clock
domain and 2 cycles in the B clock domain.

Handshake
Type

Circuits Signaling
Type

Sequence
Length

Synchronizer Restrictions

Circuit A
(Request) level 5 clocks level Full

Circuit B
(Acknowledge) level 6 clocks level

! Sequence is long
! Request must be

invalid for at least two
of the Circuit B clock
periods
! Acknowledge must be

invalid for at least two
of the Circuit A clock
periods

Circuit A
(Request) level 3 clocks pulse or

edge-detect
Partial I

Circuit B
(Acknowledge) pulse 5 clocks level

! Must control rate of
Acknowledge pulses
! Request must be

invalid for at least two
of the Circuit B clock
periods

Circuit A
(Request) pulse 2 clocks pulse or

edge-detect
Partial II

Circuit B
(Acknowledge) pulse 3 clocks pulse or

edge-detect

! Must save pending
request information
! Must register Request

and Acknowledge
signals

Table 2-1: Handshake Summary

Table 2-1 shows each handshake protocol, the type of signaling, the length of the sequence, the
synchronizers used and some considerations for the designer. These handshake protocols involve
single signals that cross clock domains, when groups of signals cross clock domains, the designer
needs to use more complex signaling schemes.

2.2 Data Path Design

One import rule when synchronizing signals is a design should not synchronize the same signal in
more than one place. Since synchronization takes between one and two clock cycles, a designer
cannot reliably predict when a signal arrives across a clock domain. In addition, the timing of the
synchronized signals in the new clock domain can vary between each synchronizer where one has
one clock cycle of delay and the other two cycles. This is a �race condition� between the individually
synchronized signals. This race condition also applies to groups of signals such as data, address
and control busses that need to travel together across clock domains.
A design should not use individual synchronizers on each signal in the group or on each bit of a
data or address bus. The synchronization problem for a signal bus is more complex than for
individual signals.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 19 of 28
 Proprietary and Confidential

2.2.1 Basic Data Path Design

Request

 Acknowledge

Data

sync

sync

ho
ld

Circuit A Circuit Bsa
m

pl
e

Figure 2-8: Data Path Synchronizer Diagram

The most basic way to solve the problem of bus synchronization is a holding register and
handshake signaling. The circuit consists of a register that holds the signal bus, combined with one
of the handshake schemes described earlier (see Figure 2-8: Data Path Synchronizer Diagram).
The handshake signals indicate when the circuit in the new clock domain can sample the bus and
when the originating circuit can replace the current contents of the holding register.

Request

Acknowledge

Data Valid Data

Data is stable at
Request asserted Data is sampled here

Data can change at
Acknowledge deasserted

Figure 2-9: Data Path Timing Using Full Handshake

In this design, the transmitting circuit stores the Data (signal bus) in the holding register as it
asserts the Request signal. These two actions can happen at the same time since the Request
signal takes at least one clock cycle before the receiving circuit detects it. When the receiving circuit
samples the Data (signal bus), it asserts the Acknowledge signal (see Figure 2-9: Data Path Timing
Using Full Handshake). This design uses full handshake and takes a long time to complete the
transfer.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 20 of 28
 Proprietary and Confidential

Data Valid Data

Data is stable after
Request asserted

Data is
sampled here

Data can change after
Acknowledge asserted

Acknowledge

Request

Figure 2-10: Data Path Timing Using Partial Handshake

A design using full handshake signaling has a large window of time for the receiving circuit to
sample the signal bus and is not very efficient. The same design can use a partial handshake
instead of the full handshake to speed up the transfer (see Figure 2-10: Data Path Timing Using
Partial Handshake).
With this type of bus synchronization, a design synchronizes the handshake signals but not the
signal bus. The signal bus originates from the holding register and remains stable until after the
receiving circuit samples it. This bus synchronization may not work in applications where the
transmitting circuit presents data too fast for the receiving circuit to handle.

2.2.2 Advanced Data Path Design

There are many cases where data needs to �pile up� as it crosses clock domains, so designs using
a single holding register would not work. One case is a transmitting circuit that presents data in
bursts, too fast for a receiving circuit to sample. Another case is a receiving circuit that samples
data faster than the transmitting circuit but in a narrower data width. These situations call for the
designer to use a FIFO.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 21 of 28
 Proprietary and Confidential

CLK (write)

write
selector

EmptyFull

Pointer Logic
Write Read

EN

D Q

EN

D Q

EN

D Q

EN

D Q

MUX read
selector

Write
Port

Read
Port

Write Data

Read Data

Synchronization
happens here

Figure 2-11: Four-Entry FIFO

Fundamentally, a designer uses a FIFO for speed matching, data width matching or both. For
speed matching, the faster port on the FIFO handles burst transfers while the slower port handles
constant rate transfers. However, with these different access types and speeds, the average data
rates into and out of the FIFO have to be the same otherwise the FIFO overflows or underflows.
Like the single register design above, the FIFO holds data in registers while it synchronizes status
signals (see Figure 2-11: Four-Entry FIFO) that determine when data changes or is sampled.
In speed matching applications, each port has a different clock. The registers in the FIFO use the
Write Port clock just as the holding register used the clock of the circuit changing the register�s
contents. The signal synchronization happens in the Pointer Logic and is more complex than
handshake signaling. There are several approaches to designing the Pointer Logic. The first
method is to synchronize the read and write strobes while using counters in each clock domain to
track the available entries in the FIFO.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 22 of 28
 Proprietary and Confidential

2.2.2.1 Counter Based FIFO Status

Pointer Logic

read counterwrite counter
Write Read

sync

sync

Full

- ++ -
Empty

Write clock domain

Read clock domain

write pointer read pointer

Figure 2-12: Dual Counter FIFO Status

In this design, the counters reflect the number of FIFO entries available for reading or writing and
the counters are synchronous to their respect port. The read counter tracks the number of entries
that contain valid data and the write counter tracks the number of entries available to store data.
When the Pointer Logic is reset the read counter starts at zero since no data is available to read.
The write counter starts at the number of entries in the FIFO, meaning all the entries are available
for storing data.
The Read signal decrements the read counter and is synchronized to the write clock domain before
it increments the write counter. The Write signal decrements the write counter and is synchronized
to the read clock domain before it increments the read counter (see Figure 2-12: Dual Counter
FIFO Status).
This design requires pulses and pulse type synchronizers for the Read and Write signals. If a level
signal crosses from one clock domain to a faster one, it remains valid for more clock cycles in the
faster domain than in the slow one. If a counter changes whenever the read or write signal is valid,
then the faster clock domain detects more reads or writes than actually happened in the slower
clock domain. Pulse synchronizers translate a single clock wide pulse in one clock domain to the
single clock wide pulse in the new clock domain and each pulse represents a single read or write of
the FIFO.
This FIFO status technique gives pessimistic status for both reads and writes. The status on the
write side indicates full when the FIFO has all entries filled and continues to indicate full after the
read strobe triggers since synchronization delays the strobe to the write counter. This is also true
for the empty status on the read side since synchronization delays the write strobe to the read
counter.
Another consideration for this design is detecting full or empty at the right time. If the FIFO has one
entry remaining and the write strobe triggers the full status must be set at that time. This gives the

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 23 of 28
 Proprietary and Confidential

full indication one clock sooner to allow the circuit writing into the FIFO enough time to stop the next
write from overflowing the FIFO. This is also true to the read side of the FIFO. In this case, if the
FIFO has only one entry and the read strobe triggers, the empty status must be set giving the read
circuitry time to prevent a read of an empty FIFO.
This Pointer Logic restricts the circuits using the FIFO from accessing it on every clock cycle, even
in the slow clock domain. The advantage of this is that the circuits accessing the FIFO have at least
one clock cycle to evaluate the FIFO status. The FIFO can have every entry filled with data without
overwriting valid data or can be empty without reading invalid data.
Another advantage of this design is that each side can read their respective counters and
determine how many entries are available. A designer can use this FIFO design for circuits that
perform multiple reads or writes of data without causing an underflow or overflow condition.
The draw back with this design is counters determine the status rather than directly comparing the
read and write pointers and for large FIFOs, these counters can be very large. Also the average
data rates are half the slowest clock frequency since the pulses (read or write) from the faster clock
domain must be spaced by at least two clock periods in the slow clock domain when using pulse
synchronizers (see Pulse Synchronizer). Another implementation of FIFO Pointer Logic that
eliminates some of these problems uses direct pointer comparison.
2.2.2.2 Pointer Compare FIFO Status

In a synchronous FIFO design, comparing the read and write pointers determines FIFO status.
Pointer comparison in asynchronous designs is more challenging since each pointer exists in a
different clock domain and synchronizing a signal bus requires the bus not change while
synchronizing handshake signals (see Basic Data Path Design). A FIFO design using this
technique for pointer synchronization would be very slow. To solve this problem the FIFO Pointer
Logic uses Gray Code instead of binary coding for the pointers.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 24 of 28
 Proprietary and Confidential

Decimal Binary Grey
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 2-2: Binary to Gray Code

Gray Code only changes one bit at a time for each increase in the count (see Table 2-2: Binary to
Gray Code). It is possible to use synchronizers on a Gray Code busses since it has only one signal
changing each time the bus changes. This eliminates the race condition between the bits of the
Gray Coded bus passing through separate synchronizers (see Basic Data Path Design).
To convert Gray Code to binary use:

gbb
gbb

gnbnbn

gnbnbn

gnbn

010
121

212
11

⊕=
⊕=

−⊕−=−
−⊕=−

=

M

and to convert binary to Gray Code use:

bbg
bbg

bnbngn

bnbng n

bngn

010
121

212

11

⊕=
⊕=

−⊕−=−

−⊕=−

=

M

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 25 of 28
 Proprietary and Confidential

Pointer Logic

Write Read

Full Empty

Write clock domain Read clock domain

sync

write pointer
(gray code)

sync

read pointer
(gray code)

gray code
to binary

gray code
to binary

Figure 2-13: Gray Code Pointer Compare FIFO Status

The pointers for this design are Gray Code counters (see Figure 2-13: Gray Code Pointer Compare
FIFO Status). Using binary pointers instead requires synchronizing the pointer values after
converting them to Gray Code and violates the restriction that synchronized signals originate from
flip-flops before crossing a clock domain (see Fundamentals). A Gray Code counter is easy to
implement.

pointer
(gray code)

gray code
to binary

1

+ binary to
gray code

binary adder

Figure 2-14: Gray Code Counter

The Gray Code counter is a binary adder with converters from and to Gray Code before and after
the adder (see Figure 2-14: Gray Code Counter). Since converting to and from Gray Code is a
XOR operation, this counter design has only two more levels of logic than a binary counter. A
design can use the same technique to compare Gray Code pointer values by adding converters
between the pointers and binary comparison logic.
A FIFO with this Pointer Logic is very fast and circuits can read or write the FIFO on every clock
cycle. However, accessing the FIFO on every cycle means the FIFO status has to include an
almost full and an almost empty indication so the circuits accessing the FIFO have enough time to
stop. Almost full indicates that one entry is available to write and almost empty indicates one entry
remains unread. These are the least number of status signals and a design needs more if the
circuits accessing the FIFO use a burst access with a fixed minimum size.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 26 of 28
 Proprietary and Confidential

This FIFO status technique gives pessimistic status for both reads and writes. The status on the
write side indicates full when the FIFO fills and continues to indicate full after it is read since
synchronization delays the read pointer to the write-side comparison logic. This is also true for the
empty status on the read side since synchronization delays the write pointer to the read-side
comparison logic.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 27 of 28
 Proprietary and Confidential

3 Conclusion
To prevent metastability of flip-flops receiving signals that cross clock domains from causing
unpredictable behavior in circuits, use synchronization. For single signals, there are three basic
types of synchronizers, level, edge and pulse. Use the level synchronizer for signals that remain
valid for many clock cycles. Use the edge-detect synchronizer for level signals in the slower clock
domain that change to pulses in the new clock domain. Finally, use pulse synchronizers for pulses
crossing clock domains. Remember when a signal bus crosses clock domains, it needs to arrive in
the new clock domain at the same time (i.e., in the same clock cycle). Do not synchronize each
individual signal but use a holding register and handshaking.
Handshaking indicates when signals in the holding register are valid and when to sample them.
There are two basic types of handshake protocol, full and partial. Full handshake is the most robust
but also uses the most time (clock cycles) to complete. Partial handshake is faster but requires
more care when designing circuits using it. Using handshake and a holding register is useful for
data busses but does not provide for passing more than one data word at a time to the new clock
domain.
When data needs to pile up such as when one or both circuit(s) are transmitting or receiving data in
bursts, use a FIFO. The flip-flops of a FIFO can be registers, latches or memory. There are two
basic types of FIFO status logic, counter and pointer comparison. Counter based FIFO status is
simple to implement but restricts access speed to half that of the slowest clock in the FIFO status
logic. Pointer comparison is more complex and involves Gray Code counters and comparison logic
but allows FIFO access on every clock cycle. However this type of access may require advanced
warning to the circuits accessing the FIFO through additional status signals to prevent overflow or
underflow conditions.
Using these techniques ensures that any designs with multiple clock domains have reliable and
predictable performance.

Crossing the Abyss Asynchronous Signals in a Synchronous World

 Paradigm Works Inc. Page 28 of 28
 Proprietary and Confidential

4 References
Leroy Davis, �Logic Metastability�, September 2002.

Available at www.interfacebus.com/Design_MetaStable.html

Luke Seed, �Introduction to VLSI/Clocked CMOS Circuits�, The University of Sheffield, UK, February 2002.
Available at www.shef.ac.uk/eee/teach/resources/eee310/documents/VLSI_Clocked_CMOS.pdf

Eilhard Haseloff, �Metastable Response in 5-V Logic Circuits�, February 1997, (Texas Instruments Application
Note SDYA006)
Available at www-s.ti.com/sc/psheets/sdya006/sdya006.pdf

Clifford E. Cummings, �Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs�,
SNUG 2001 (Synopsys Users Group Conference, San Jose, CA, 2001) User Papers, March 2001, Section
MC1, 3rd paper.
Available at www.sunburst-design.com/papers

Luke Seed, �Introduction to VLSI/Clocked CMOS Circuits�, The University of Sheffield, UK, February 2002.
Available at www.shef.ac.uk/eee/teach/resources/eee310/documents/VLSI_Clocked_CMOS.pdf

Anon, �A Metastability Primer�, November 15, 1989, (Philips Semiconductors Application Note AN219).
Available at www.semiconductors.philips.com/acrobat/applicationnotes/AN219_1.pdf

John F. Wakerly, Digital Design: Principles and Practices, Prentice Hall, 1990.

	Introduction
	Fundamentals
	Signal Synchronization
	Synchronizer Circuits
	Level Synchronizer
	Edge-Detect Synchronizer
	Pulse Synchronizer

	Design Methodologies
	Handshaking
	Full Handshaking
	Partial Handshaking
	Partial Handshake Technique I
	Partial Handshake Technique II

	Data Path Design
	Basic Data Path Design
	Advanced Data Path Design
	Counter Based FIFO Status
	Pointer Compare FIFO Status

	Conclusion
	References

