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1 Introduction 
Logic circuits having a single clock are the most elementary type of digital design. The reality is that 
modern digital designs are increasingly sophisticated; having multiple clocks driving different 
circuits and circuits that must reliably communicate with each other. Most data movement 
applications such as disk drive controllers, CDROM/DVD controllers, modems, network interfaces 
and network processors, have multiple clock domains and bear inherent challenges moving data 
across clock domains. 
In modern IC, ASIC and FPGA designs, the engineer has many software programs to help create 
million gate circuits, but these programs cannot solve the problem of signal synchronization. When 
signals travel from one clock domain to another, the signal appears to be asynchronous in the new 
clock domain. Since the engineer�s toolbox does not have the tools to handle this situation, it is up 
to the designer to know reliable design techniques that reduce the risk of failure for circuits 
communicating across clock domains. 
This paper explores the fundamentals of signal synchronization and demonstrates circuits a 
designer can use to handle signals that cross clock domains. It examines design methodologies for 
synchronizing single signals and ways of handling groups of signals including data busses that 
cross clock domains. 

1.1 Fundamentals 

The first step in managing multi-clock designs is to understand the problem of signal stability. When 
a signal crosses a clock domain, it appears to be an asynchronous signal to the circuitry in the new 
clock domain. The circuit that receives this signal needs to synchronize it. Synchronization prevents 
the metastable state of the first storage element (flip-flop) in the new clock domain from 
propagating through the circuit.  
 

Clock

metastable

Output

Input

 
Figure 1-1: Metastable Output 

Metastability is the inability of a flip-flop to arrive at a known state in a specific amount of time. 
When a flip-flop enters a metastable state, a designer cannot predict the element�s output voltage 
level nor when the output will settle to a correct voltage level (see Figure 1-1: Metastable Output). 
During this settling time, the flip-flop�s output is at some intermediate voltage level or may oscillate 
and can cause a cascade of failures when the flip-flops further down the signal path capture the 
invalid output level. 
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Figure 1-2: Stable Window 

For any flip-flop, there is a small window of time where the input must be stable (see Figure 1-2: 
Stable Window). This window of time is a function of the design of the flip-flop, the implementation 
technology, operating conditions and the load on the output for outputs not buffered. Also sharp 
edge rates on the input signal minimize the window of time. The probability of a flip-flop entering a 
metastable state is also a function of the data and clock frequencies. There are more windows of 
vulnerability as the clock frequency goes up and there is greater probability of hitting the window as 
the data frequency goes up. 
FPGA manufacturers and IC foundries qualify their flip-flops and determine their characteristics. 
Mean Time Between Failures (MTBF) describes the metastability characteristic of a flip-flop using 
statistics to determine the probability of a flip-flop failure. The MTBF is based in part on the length 
of the time window during which a change in the input signal causes the flip-flop to become 
unstable. In addition, MTBF calculation uses the frequency of the input signal and the frequency of 
the clock driving the flip-flop. 
Each different type of flip-flop in an ASIC library or in a type of FPGA has timing requirements that 
help the designer determine the window of vulnerability. Setup time describes the time an input 
signal to a flip-flop must be stable before the clock edge and the hold time is the time the signal 
must remain stable after the clock edge. These are very conservative times to account for all the 
possible variations in supply voltage, operating temperature, signal quality and fabrication 
variations. If a design meets these timing requirements, the possibility of the flip-flop failing is so 
small it is negligible. 
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Figure 1-3: Synthesis Timing Calculation 
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Synthesis programs that engineers use in modern IC and FPGA designs, ensure digital circuits 
meet the setup and hold requirements for each flip-flop in the design, but asynchronous signals 
pose problems for the software. A signal crossing a clock domain appears to be asynchronous to 
the logic in the new clock domain. Most synthesis programs have trouble solving the problem of 
determining if asynchronous signals meet the timing requirements for flip-flops. Synthesis 
programs cannot determine the time the flip-flop is unstable, and so they cannot determine the total 
delay from the flip-flop, through the combinational logic to the next flip-flop (see Figure 1-3: 
Synthesis Timing Calculation). Since synthesis software cannot handle signal synchronization, the 
designer uses circuits that mitigate the impact of asynchronous signaling.  

1.2 Signal Synchronization 
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Figure 1-4: A Simple Synchronizer 

Synchronizing signals begins by protecting downstream logic from the metastable state of the first 
flip-flop in a new clock domain. A simple synchronizer consists of two flip-flops in series without 
combinational circuitry between them (see Figure 1-4: A Simple Synchronizer). This design 
ensures the first flip-flop exits its metastable state and its output settles before the second flip-flop 
samples the first one�s output.  
Besides the circuit design, there is another requirement to make a successful synchronizer. The 
layout engineer needs to place the flip-flops close to each other. This guarantees the shortest 
signal wire between the output of the first flip-flop and the input of the second one and ensures the 
smallest possible clock skew between the flip-flops. 
IC foundries help with signal synchronization by providing specially designed synchronizer cells. 
Usually this synchronizer cells consists of a flip-flop with a very high gain that uses more power and 
is larger than a standard flip-flop. This flip-flop has reduced setup and hold time requirements for 
the input signal and is resistant to oscillating when input signal causes a metastable condition. 
Another type of synchronizer cell contains two flip-flops, which eases the layout engineer�s job by 
meeting the requirement of placing the flip-flops close to each other and prevents the designer from 
placing any combinational logic between the flip-flops. 
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Figure 1-5: Full Synchronizer Circuit 
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For synchronization to work properly, the signal crossing clock domains comes from a flip-flop in 
the original clock domain. It does not pass through any combinational logic between the originating 
flip-flop and the first flip-flop of the synchronizer (see Figure 1-5: Full Synchronizer Circuit). This is 
important because the first stage of a synchronizer is sensitive to glitches that combination logic 
produces. If a glitch is long enough and occurs at the correct time, it could meet the setup and hold 
requirements of the first flip-flop in the synchronizer. This leads to the synchronizer passing a false 
valid indication to the rest of the logic in the new clock domain. Another consideration when using 
synchronizers is signal delay. 
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Figure 1-6: Synchronizer Timing 

A synchronized signal is valid in the new clock domain after two clock edges. The signal delay is 
between one and two clock periods in the new clock domain (see Figure 1-6: Synchronizer 
Timing). A rule of thumb is a synchronizer circuit causes two clock cycles of delay in the new clock 
domain and a designer needs to consider how synchronization delay impacts timing of signals 
crossing clock domains. 

1.3 Synchronizer Circuits 

There are many different designs for synchronizers and each has specific uses because one type 
does not work well in all applications. All synchronizers use the basic circuit shown in Figure 1-4 
and fall into three basic categories: level, edge-detect and pulse. 

1.3.1 Level Synchronizer 

The circuit in Figure 1-4 is a level synchronizer where the signal crossing clock domains stays high 
and low for more than a two clock cycles in the new clock domain. A requirement of this circuit is 
that the signal needs to transition to its invalid state before it can become valid again. Each time the 
signal goes valid, the receiving logic considers it a single event no matter how long the signal 
remains valid. This circuit is the heart of all other synchronizers as in the edge-detect synchronizer. 

1.3.2 Edge-Detect Synchronizer 
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Figure 1-7: Edge-Detect Synchronizer 

Figure 1-7 shows the edge-detect synchronizer circuit, which adds a flip-flop to the output of the 
level synchronizer. The output of the additional flip-flop is inverted and �AND�-ed with the output of 
the level synchronizer. This circuit detects the rising edge of the input to the synchronizer and 
generates a single clock wide active high pulse. Switching the inverter on the �AND� gate inputs 
creates a synchronizer that detects the falling edge of the input signal. In addition, changing the 
AND gate to a NAND gate results in a circuit that generates an active low pulse. 
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Figure 1-8: Rising Edge-Detect Synchronizer Timing 
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Figure 1-9: Falling Edge-Detect Synchronizer Timing 

The edge-detect synchronizer�s main application is synchronizing a pulse going to a faster clock 
domain. This circuit produces a pulse that indicates the rising (or falling) edge of the input signal. 
Figure 1-8 and Figure 1-9 show the circuit�s timing for rising edge and falling edge detection 
respectively. 
A restriction on the application of this synchronizer is the width of the input pulse must be greater 
than the period of the synchronizer clock plus the required hold time of the first synchronizer flip-
flop. The safest pulse width is twice the synchronizer clock period. This synchronizer does not work 
if the input is a single clock-wide pulse going to a slower clock domain; however, the pulse 
synchronizer solves this problem. 

1.3.3 Pulse Synchronizer 
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Figure 1-10: Pulse Synchronizer 

Figure 1-10 shows the pulse synchronizer. The input signal is a single clock cycle wide pulse that 
triggers a toggle circuit in the originating clock domain. The output of the toggle circuit is a signal 
that switches from high to low and vice versa each time it receives a pulse. This signal passes 
through the level synchronizer and arrives at one input of the �XOR� gate while a one clock cycle 
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delayed version goes to the other input of the �XOR�. For one clock cycle, each time the toggle 
circuit changes state the output of this synchronizer goes high. 
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Figure 1-11: Pulse Synchronizer Timing 

The basic function of a pulse synchronizer is to take a single clock wide pulse from one clock 
domain and create a single clock wide pulse in the new domain. Figure 1-11 shows the 
synchronizer�s timing. 
One restriction on this synchronizer design is the input pulses must have a minimum time between 
them. This minimum spacing between the pulses is equal to two synchronizer clock periods. If the 
input pulses are closer, the output pulses in the new clock domain are adjacent to each other 
resulting in an output pulse that is wider than one clock cycle. This is a more severe problem when 
the clock period of input pulse is greater than twice the synchronizer clock period. In this case, if the 
input pulses are too close, the synchronizer does not detect every one. 
 

Type Application Input Output Restriction 
Level Synchronizes level 

signals 
Level Level Input must be valid for at least 

two clock periods in the new 
domain. 

Each time output goes valid, 
counts as a single event. 

Edge-
detect 

Detects rising or 
falling edge of input 

Level 
or 

Pulse 

Pulse Input must be valid for at least 
two clock periods in the new 

domain. 
Pulse Synchronizes single 

clock-wide pulses 
Pulse Pulse Input pulses must be spaced by at 

least two clock periods in the new 
domain. 

Table 1-1: Synchronizer Summary 
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Table 1-1 show the synchronizers described above, their application, the type of output and the 
restriction on how a designer uses them. There are other synchronizer designs but these serve 
most applications a designer encounters. 
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2 Design Methodologies 
Synchronizers are the most basic tools that an engineer uses to handle signals crossing clock 
domains. However, an engineer also needs to know protocols that circuits use when they 
communicate with each other asynchronously. In many applications, simple signals are not the 
only information crossing clock domains; data and control busses also travel together across 
domains. Engineers have additional tools at their disposal that can handle these situations, such as 
handshaking protocols and FIFOs. 

2.1 Handshaking 

Handshaking allows digital circuits to effectively communicate with each other when the response 
time of one or both circuits is not predictable. An example that most designers have encountered is 
an arbitrated bus. Here more than one circuit requests access to a single bus (i.e., PCI, AMBA), 
and arbitration determines which circuit gains access to the bus. Each circuit signals a �request� 
and the arbitration logic determines which of the requesters is the �winner�. The winning requester 
receives an �acknowledge� that indicates it has access to the bus, it discontinues its request and 
begins the bus transaction. 
 

Circuit A
Request

Acknowledge

Circuit B

 
Figure 2-1: Handshake Circuit 

The response time of circuits in different clock domains is not predictable because of 
synchronization so handshake signaling is a very effective means of communication between 
them. Full and partial handshake signaling are the two fundamental types of handshake protocol. 
Each type of handshake uses the synchronizers described above, and each has its own set of 
design trade-offs. To illustrate the various handshake protocols, the diagram in Figure 2-1 shows 
two circuits and the signals between them. Circuit A controls the Request signal, Circuit B controls 
the Acknowledge signal, and each handshake protocol is examined using this diagram. 

2.1.1  Full Handshaking 

Request

Acknowledge

 
Figure 2-2: Full Handshake Signaling 

Full handshake signaling means the two circuits wait for each other before asserting or dropping 
their respective handshake signal. The way this protocol works is first Circuit A asserts its request 
signal. Next, Circuit B detects that the request signal is valid and asserts its acknowledge signal. 
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When Circuit A detects that the acknowledge signal is valid, it drops its request signal. Finally when 
Circuit B detects that the request is invalid, it drops its acknowledge signal (see Figure 2-2: Full 
Handshake Signaling). Circuit A does not make a new request until it detects that the acknowledge 
signal is invalid. 
This type of handshake uses level synchronizers. A designer uses this technique when Circuit B 
(the acknowledging circuit) needs to inform Circuit A (the requesting circuit) that it is actively 
processing the request. This handshake requires that the requesting circuit hold off its next request 
until it detects that the acknowledge signal is invalid. The following is a detailed description and 
timing for full handshake signaling. 
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Figure 2-3: Full Handshake Flow 

Use the rules of thumb that signals take two clock cycles to cross a clock domain and circuits 
register signals before they cross clock domains. The sequence and timing for this type of 
handshake is (see Figure 2-3: Full Handshake Flow): 

1. Circuit A asserts Request (in clock domain A). 
2. Circuit B detects Request two clocks later (in clock domain B). 
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge. 
4. Circuit A detects Acknowledge two clocks later (in clock domain A). 
5. In the next clock cycle (domain A), Circuit A de-asserts Request. 
6. Circuit B detects Request two clocks later (in clock domain B). 
7. In the next clock cycle (domain B), Circuit B de-asserts Acknowledge. 
8. Circuit A detects Acknowledge two clocks later (in clock domain A). 

Here, the complete sequence takes a maximum of 5 cycles in the A clock domain plus a maximum 
of 6 cycles in the B clock domain.  
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With full handshake, each circuit explicitly knows the state of the other by examining the request 
and acknowledge signals, making full handshake signaling very robust. The drawback with this 
scheme is the entire process takes time. Partial handshaking is another signaling technique that 
shortens this sequence of events. 

2.1.2 Partial Handshaking 

With partial handshake signaling, the two circuits communicating with each other do not wait for the 
other one before dropping their respective signal and continuing with the handshake sequence. 
Partial handshaking is less robust than full handshaking but the complete handshake cycle is 
faster. It is less robust because the handshake signals do not indicate the state of the both circuits 
so the designer needs ensure the circuit saves state information normally present in full handshake 
signals. By not waiting until the other circuit drops it handshake signal, the whole sequence of 
events is shorter. 
When using partial handshake signaling, the acknowledging circuit must generate its signal at the 
correct time. If the acknowledging circuit needs to complete processing the request before it can 
handle another, then the timing of the acknowledge signal is important. The circuit uses its 
acknowledge signal to indicate when it completed any processing. There two partial handshake 
schemes, one that mixes level and pulse signaling and the other that uses pulse signaling only. 
2.1.2.1 Partial Handshake Technique I 

Request

Acknowledge

 
Figure 2-4: Partial Handshake I Signaling 

In the first partial handshake scheme, Circuit A asserts its request signal and the Circuit B 
acknowledges it with a single clock-wide pulse. In this case, Circuit B does not care when Circuit A 
drops its request signal. However, to make this technique work, Circuit A must drop its request 
signal for at least one clock cycle otherwise Circuit B cannot distinguish between the previous and 
the new request. 
With this handshake, Circuit B uses a level synchronizer for the request signal and Circuit A uses a 
pulse synchronizer for the acknowledge signal. In this handshake protocol the acknowledge pulses 
only occur when Circuit B detects the request signal. This allows Circuit A to control the spacing of 
the pulses into the synchronizer by controlling the timing of its request signal. The following is a 
detailed description and timing for this type of partial handshake signaling. 
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Figure 2-5: Partial Handshake I Flow 

Once again, use the rules of thumb that signals take two clock cycles to cross a clock domain and 
circuits register signals before they cross clock domains. The sequence and timing for this type of 
handshake is (see Figure 2-5: Partial Handshake I Flow): 

1. Circuit A asserts Request (in clock domain A). 
2. Circuit B detects Request two clocks later (in clock domain B). 
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge. 
4. Circuit A detects Acknowledge two clocks later (in clock domain A). 
5. In the next clock cycle (domain A), Circuit A de-asserts Request. 
6. Circuit B detects Request two clocks later (in clock domain B). 

Here, the complete sequence takes a maximum of 3 cycles in the A clock domain plus a maximum 
of 5 cycles in the B clock domain. This partial handshake signaling uses 2 less clock cycles in the A 
clock domain and 1 less clock cycle in the B clock domain than full handshake signaling. The 
complete sequence can be shorter by a few more clock cycles by using the following partial 
handshake technique. 
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2.1.2.2  Partial Handshake Technique II 
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Figure 2-6: Partial Handshake II Signaling 

In this second partial handshake scheme, Circuit A asserts it request with a single clock-wide pulse 
and Circuit B acknowledges it with a single clock-wide pulse. In this case, both circuits need to 
save state to indicate that the request is pending. 
This type of handshake uses pulse synchronizers but if one circuit has a clock that is twice as fast 
as the other, that circuit can use an edge-detect synchronizer instead. The following is a detailed 
description and timing for this type of partial handshake signaling. 
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Figure 2-7: Partial Handshake II Flow 

Once again, use the rules of thumb that signals take two clock cycles to cross a clock domain and 
circuits register signals before they cross clock domains. The sequence and timing for this type of 
handshake is (see Figure 2-7: Partial Handshake II Flow): 

1. Circuit A asserts Request (in clock domain A). 
2. Circuit B detects Request two clocks later (in clock domain B). 
3. In the next clock cycle (domain B), Circuit B asserts Acknowledge. 
4. Circuit A detects Acknowledge two clocks later (in clock domain A). 
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Here, the complete sequence takes a maximum of 2 cycles in the A clock domain plus a maximum 
of 3 cycles in the B clock domain. This partial handshaking technique uses 3 less clock cycles in 
the A clock domain and 3 less clock cycle in the B clock domain than full handshake signaling. This 
technique is also faster than the first partial handshake signaling by one cycle in the A clock 
domain and 2 cycles in the B clock domain. 
 

Handshake 
Type  

Circuits Signaling 
Type 

Sequence 
Length 

Synchronizer Restrictions 

Circuit A 
(Request) level 5 clocks level Full 

Circuit B 
(Acknowledge) level 6 clocks level 

! Sequence is long 
! Request must be 

invalid for at least two 
of the Circuit B clock 
periods 
! Acknowledge must be 

invalid for at least two 
of the Circuit A clock 
periods 

Circuit A 
(Request) level 3 clocks pulse or 

edge-detect 
Partial I 

Circuit B 
(Acknowledge) pulse 5 clocks level 

! Must control rate of 
Acknowledge pulses 
! Request must be 

invalid for at least two 
of the Circuit B clock 
periods 

Circuit A 
(Request) pulse 2 clocks pulse or 

edge-detect 
Partial II 

Circuit B 
(Acknowledge) pulse 3 clocks pulse or 

edge-detect 

! Must save pending 
request information 
! Must register Request 

and Acknowledge 
signals 

Table 2-1: Handshake Summary 

Table 2-1 shows each handshake protocol, the type of signaling, the length of the sequence, the 
synchronizers used and some considerations for the designer. These handshake protocols involve 
single signals that cross clock domains, when groups of signals cross clock domains, the designer 
needs to use more complex signaling schemes. 

2.2 Data Path Design 

One import rule when synchronizing signals is a design should not synchronize the same signal in 
more than one place. Since synchronization takes between one and two clock cycles, a designer 
cannot reliably predict when a signal arrives across a clock domain. In addition, the timing of the 
synchronized signals in the new clock domain can vary between each synchronizer where one has 
one clock cycle of delay and the other two cycles. This is a �race condition� between the individually 
synchronized signals. This race condition also applies to groups of signals such as data, address 
and control busses that need to travel together across clock domains. 
A design should not use individual synchronizers on each signal in the group or on each bit of a 
data or address bus. The synchronization problem for a signal bus is more complex than for 
individual signals. 
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2.2.1 Basic Data Path Design 
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Figure 2-8: Data Path Synchronizer Diagram 

The most basic way to solve the problem of bus synchronization is a holding register and 
handshake signaling. The circuit consists of a register that holds the signal bus, combined with one 
of the handshake schemes described earlier (see Figure 2-8: Data Path Synchronizer Diagram). 
The handshake signals indicate when the circuit in the new clock domain can sample the bus and 
when the originating circuit can replace the current contents of the holding register. 
 

Request

Acknowledge

Data Valid Data

Data is stable at
Request asserted Data is sampled here

Data can change at
Acknowledge deasserted  

Figure 2-9: Data Path Timing Using Full Handshake 

In this design, the transmitting circuit stores the Data (signal bus) in the holding register as it 
asserts the Request signal. These two actions can happen at the same time since the Request 
signal takes at least one clock cycle before the receiving circuit detects it. When the receiving circuit 
samples the Data (signal bus), it asserts the Acknowledge signal (see Figure 2-9: Data Path Timing 
Using Full Handshake). This design uses full handshake and takes a long time to complete the 
transfer. 



 
Crossing the Abyss Asynchronous Signals in a Synchronous World 

 
 

 
 

 Paradigm Works Inc. Page 20 of 28 
 Proprietary and Confidential 

 

 

Data Valid Data

Data is stable after
Request asserted

Data is
sampled here

Data can change after
Acknowledge asserted

Acknowledge

Request

 
Figure 2-10: Data Path Timing Using Partial Handshake 

A design using full handshake signaling has a large window of time for the receiving circuit to 
sample the signal bus and is not very efficient. The same design can use a partial handshake 
instead of the full handshake to speed up the transfer (see Figure 2-10: Data Path Timing Using 
Partial Handshake). 
With this type of bus synchronization, a design synchronizes the handshake signals but not the 
signal bus. The signal bus originates from the holding register and remains stable until after the 
receiving circuit samples it. This bus synchronization may not work in applications where the 
transmitting circuit presents data too fast for the receiving circuit to handle. 

2.2.2 Advanced Data Path Design 

There are many cases where data needs to �pile up� as it crosses clock domains, so designs using 
a single holding register would not work. One case is a transmitting circuit that presents data in 
bursts, too fast for a receiving circuit to sample. Another case is a receiving circuit that samples 
data faster than the transmitting circuit but in a narrower data width. These situations call for the 
designer to use a FIFO. 
 



 
Crossing the Abyss Asynchronous Signals in a Synchronous World 

 
 

 
 

 Paradigm Works Inc. Page 21 of 28 
 Proprietary and Confidential 

 

CLK (write)

write
selector

EmptyFull

Pointer Logic
Write Read

EN

D  Q

EN

D  Q

EN

D  Q

EN

D  Q

MUX read
selector

Write
Port

Read
Port

Write Data

Read Data

Synchronization
happens here

 
Figure 2-11: Four-Entry FIFO 

Fundamentally, a designer uses a FIFO for speed matching, data width matching or both. For 
speed matching, the faster port on the FIFO handles burst transfers while the slower port handles 
constant rate transfers. However, with these different access types and speeds, the average data 
rates into and out of the FIFO have to be the same otherwise the FIFO overflows or underflows. 
Like the single register design above, the FIFO holds data in registers while it synchronizes status 
signals (see Figure 2-11: Four-Entry FIFO) that determine when data changes or is sampled. 
In speed matching applications, each port has a different clock. The registers in the FIFO use the 
Write Port clock just as the holding register used the clock of the circuit changing the register�s 
contents. The signal synchronization happens in the Pointer Logic and is more complex than 
handshake signaling. There are several approaches to designing the Pointer Logic. The first 
method is to synchronize the read and write strobes while using counters in each clock domain to 
track the available entries in the FIFO. 
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2.2.2.1 Counter Based FIFO Status 
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Figure 2-12: Dual Counter FIFO Status 

In this design, the counters reflect the number of FIFO entries available for reading or writing and 
the counters are synchronous to their respect port. The read counter tracks the number of entries 
that contain valid data and the write counter tracks the number of entries available to store data. 
When the Pointer Logic is reset the read counter starts at zero since no data is available to read. 
The write counter starts at the number of entries in the FIFO, meaning all the entries are available 
for storing data. 
The Read signal decrements the read counter and is synchronized to the write clock domain before 
it increments the write counter. The Write signal decrements the write counter and is synchronized 
to the read clock domain before it increments the read counter (see Figure 2-12: Dual Counter 
FIFO Status).  
This design requires pulses and pulse type synchronizers for the Read and Write signals. If a level 
signal crosses from one clock domain to a faster one, it remains valid for more clock cycles in the 
faster domain than in the slow one. If a counter changes whenever the read or write signal is valid, 
then the faster clock domain detects more reads or writes than actually happened in the slower 
clock domain. Pulse synchronizers translate a single clock wide pulse in one clock domain to the 
single clock wide pulse in the new clock domain and each pulse represents a single read or write of 
the FIFO. 
This FIFO status technique gives pessimistic status for both reads and writes. The status on the 
write side indicates full when the FIFO has all entries filled and continues to indicate full after the 
read strobe triggers since synchronization delays the strobe to the write counter. This is also true 
for the empty status on the read side since synchronization delays the write strobe to the read 
counter. 
Another consideration for this design is detecting full or empty at the right time. If the FIFO has one 
entry remaining and the write strobe triggers the full status must be set at that time. This gives the 
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full indication one clock sooner to allow the circuit writing into the FIFO enough time to stop the next 
write from overflowing the FIFO. This is also true to the read side of the FIFO. In this case, if the 
FIFO has only one entry and the read strobe triggers, the empty status must be set giving the read 
circuitry time to prevent a read of an empty FIFO. 
This Pointer Logic restricts the circuits using the FIFO from accessing it on every clock cycle, even 
in the slow clock domain. The advantage of this is that the circuits accessing the FIFO have at least 
one clock cycle to evaluate the FIFO status. The FIFO can have every entry filled with data without 
overwriting valid data or can be empty without reading invalid data. 
Another advantage of this design is that each side can read their respective counters and 
determine how many entries are available. A designer can use this FIFO design for circuits that 
perform multiple reads or writes of data without causing an underflow or overflow condition. 
The draw back with this design is counters determine the status rather than directly comparing the 
read and write pointers and for large FIFOs, these counters can be very large. Also the average 
data rates are half the slowest clock frequency since the pulses (read or write) from the faster clock 
domain must be spaced by at least two clock periods in the slow clock domain when using pulse 
synchronizers (see Pulse Synchronizer). Another implementation of FIFO Pointer Logic that 
eliminates some of these problems uses direct pointer comparison. 
2.2.2.2 Pointer Compare FIFO Status 

In a synchronous FIFO design, comparing the read and write pointers determines FIFO status. 
Pointer comparison in asynchronous designs is more challenging since each pointer exists in a 
different clock domain and synchronizing a signal bus requires the bus not change while 
synchronizing handshake signals (see Basic Data Path Design). A FIFO design using this 
technique for pointer synchronization would be very slow. To solve this problem the FIFO Pointer 
Logic uses Gray Code instead of binary coding for the pointers. 
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Decimal Binary Grey 
0 0000 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 
7 0111 0100 
8 1000 1100 
9 1001 1101 
10 1010 1111 
11 1011 1110 
12 1100 1010 
13 1101 1011 
14 1110 1001 
15 1111 1000 

Table 2-2: Binary to Gray Code 

Gray Code only changes one bit at a time for each increase in the count (see Table 2-2: Binary to 
Gray Code). It is possible to use synchronizers on a Gray Code busses since it has only one signal 
changing each time the bus changes. This eliminates the race condition between the bits of the 
Gray Coded bus passing through separate synchronizers (see Basic Data Path Design). 
To convert Gray Code to binary use: 

gbb
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and to convert binary to Gray Code use: 
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Figure 2-13: Gray Code Pointer Compare FIFO Status 

The pointers for this design are Gray Code counters (see Figure 2-13: Gray Code Pointer Compare 
FIFO Status). Using binary pointers instead requires synchronizing the pointer values after 
converting them to Gray Code and violates the restriction that synchronized signals originate from 
flip-flops before crossing a clock domain (see Fundamentals). A Gray Code counter is easy to 
implement. 
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1

+ binary to
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Figure 2-14: Gray Code Counter 

The Gray Code counter is a binary adder with converters from and to Gray Code before and after 
the adder (see Figure 2-14: Gray Code Counter). Since converting to and from Gray Code is a 
XOR operation, this counter design has only two more levels of logic than a binary counter. A 
design can use the same technique to compare Gray Code pointer values by adding converters 
between the pointers and binary comparison logic. 
A FIFO with this Pointer Logic is very fast and circuits can read or write the FIFO on every clock 
cycle. However, accessing the FIFO on every cycle means the FIFO status has to include an 
almost full and an almost empty indication so the circuits accessing the FIFO have enough time to 
stop. Almost full indicates that one entry is available to write and almost empty indicates one entry 
remains unread. These are the least number of status signals and a design needs more if the 
circuits accessing the FIFO use a burst access with a fixed minimum size. 
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This FIFO status technique gives pessimistic status for both reads and writes. The status on the 
write side indicates full when the FIFO fills and continues to indicate full after it is read since 
synchronization delays the read pointer to the write-side comparison logic. This is also true for the 
empty status on the read side since synchronization delays the write pointer to the read-side 
comparison logic. 
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3 Conclusion 
To prevent metastability of flip-flops receiving signals that cross clock domains from causing 
unpredictable behavior in circuits, use synchronization. For single signals, there are three basic 
types of synchronizers, level, edge and pulse. Use the level synchronizer for signals that remain 
valid for many clock cycles. Use the edge-detect synchronizer for level signals in the slower clock 
domain that change to pulses in the new clock domain. Finally, use pulse synchronizers for pulses 
crossing clock domains. Remember when a signal bus crosses clock domains, it needs to arrive in 
the new clock domain at the same time (i.e., in the same clock cycle). Do not synchronize each 
individual signal but use a holding register and handshaking. 
Handshaking indicates when signals in the holding register are valid and when to sample them. 
There are two basic types of handshake protocol, full and partial. Full handshake is the most robust 
but also uses the most time (clock cycles) to complete. Partial handshake is faster but requires 
more care when designing circuits using it. Using handshake and a holding register is useful for 
data busses but does not provide for passing more than one data word at a time to the new clock 
domain. 
When data needs to pile up such as when one or both circuit(s) are transmitting or receiving data in 
bursts, use a FIFO. The flip-flops of a FIFO can be registers, latches or memory. There are two 
basic types of FIFO status logic, counter and pointer comparison. Counter based FIFO status is 
simple to implement but restricts access speed to half that of the slowest clock in the FIFO status 
logic. Pointer comparison is more complex and involves Gray Code counters and comparison logic 
but allows FIFO access on every clock cycle. However this type of access may require advanced 
warning to the circuits accessing the FIFO through additional status signals to prevent overflow or 
underflow conditions. 
Using these techniques ensures that any designs with multiple clock domains have reliable and 
predictable performance. 
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