Multilayered IP
for
System Level Verification

DVCon 2004

Dr. Richard Vialls
Paul McCloy
Presented by: Dr. Ambar Sarkar
Agenda

- Reusable Verification IP
- eRM and eVC
- Why layering is important
- Multi-layered eVC
 - Examples drawn from Paradigm Works
 - eVCs: Ethernet, PCI-Express
- Conclusions
Verification IP

- Off-the-shelf verification code
- Promotes verification reuse
 - Horizontal (Between projects)
 - Vertical (Block to system-level)
 - Both infrastructure and test scenarios
- Mostly verifying interface protocol standards
 - USB, PCI-Express, Ethernet, Bluetooth
- Most interface protocols are layered
Verification IP

- Support transaction-based verification strategy
 - Encapsulate protocol related rules
 - Encapsulate state machine behavior
- Measure effectiveness
 - Collect functional coverage information
- Help debug
 - Write log files for interface behavior
eRM

- e Reuse Methodology™
- Develop and distribute Verification Components (eVCs) written in e
- Methodology to promote reuse
- Verisity’s Specman™ tool extensions
Typical eVC

Sequence
- A reusable traffic scenario, representing a sequence of transactions over time

Sequence Driver
- Generates constrained-random traffic sequences
Typical eVC

Env

Agent

Seq driver

seq

BFM

Monitor

Tx

Rx

To/from Design Under Test (DUT)

BFM (Bus functional model)
- Transaction items to DUT signals
Monitor
- Protocol checking
- Coverage collection
- Logging

© Copyright 2000-2004 Paradigm Works Inc.
Typical eVC

Env

Agent

Seq driver
seq

BFM

Monitor

Tx
Rx

To/from Design Under Test (DUT)

- Env
 - Top-level unit of eVC
 - Mapped to the network
- Agent
 - A node in the network
PCI Express Protocol

Transaction Layer

Data Link Layer

PHY Layer

Lanes

Node
Single layer approach breaks down

- Difficult to control lower layer behaviour from high layer data structures
- Often want to concentrate on lower-layer testing
- Often need control of behaviour between ‘packets’
- Often need to co-ordinate low and high level behaviour
Enter layering

Layering allows separation of control and observability

Should break layers at natural boundaries for protocol

Layering has only become viable as a result of introduction of eRM

Use of eRM very important to get full advantages of layered approach
Design Goals for Layered eVC

- Each layer looks/feels like a single eVC
- Higher-layer drives the lower-layer
- Out-of-box appear as a single layer at the top-level
- Override at each level
- Coordinate to create multi-level test scenarios
- Allow reactive generation of stimulus

© Copyright 2000-2004 Paradigm Works Inc.
Multi-layered eVC

- Inter-layer sequence connection
- Virtual Sequences
Inter-layer sequence connection

- Convert higher-layer sequence item to lower layer item
- Connector
 - Current eRM approach
 - Resides within the sequence item
 - Generates lower layer item based on higher layer
 - Insufficient
Inter-layer sequence connection

- Predictor
 - Resides with lower layer
 - Can take into account lower layer and protocol operations
 - Keeps track of state
 - Extension to eRM
 - Can provide a reference model for stimuli generation
 - Behavior may be overridden by sequence interface (Predictor Sequences)
Predictor-based Architecture

TL Agent

Driver

BFM

Local TL Monitor

Remote TL Monitor

DLL Agent

Driver

DLL Predictor

BFM

Local DLL Monitor

Remote DLL Monitor

© Copyright 2000-2004 Paradigm Works Inc.
Inter-layer sequence connection

- Predictor based architecture
- Extension to eRM
- Can provide a reference model for stimuli generation
- Behavior may be overridden by sequence interface (Predictor Sequences)
Co-ordinated testing – Virtual sequences

Can build virtual sequences to control simultaneous behaviour across multiple layers.

E.g. A stream of 100 TL packets with an LCRC error on 43rd packet at DLL
ACTIVE SLAVE XSBI Env

Virtual sequence driver

DUT

XSBI Master Ethernet Device
(e.g. PCS layer device)

Rx

Signal interface

Tx

Monitor

BFM

RX XGMII Agent

RX PACKET Agent

TX PACKET Agent

Monitor

Monitor

Monitor

Monitor

seq
driver
seq
driver
seq
driver
seq
driver
seq

© Copyright 2000-2004 Paradigm Works Inc.
More on Virtual Sequences

Can also co-ordinate behaviour across multiple layers AND multiple eVCs.

E.g.: Set up DMA transfer on PCI interface to receive Ethernet packet that has error in last XSBI block.
Full Example:
PCI Express eVC
Anatomy of a Single PCIE Protocol Layer

Seq Driver

BFM

TL Predictor

Local TL Monitor

Remote TL Monitor

TL Agent

Tx Rx Tx Rx
Contents of a PCIE Protocol Layer Agent

- Sequence Driver
 - API
 - Supplied sequence library
- Predictor
 - BFM drives lower layers
 - Drives DUT at the lowest level
 - Extensible for unique DUT interface
- Monitor
 - Protocol
 - Scoreboard interface
 - Coverage
 - Compliance
- Scoreboard
 - Supplied for TL, Interfaces for other layers
Log Files

- Log at each layer
- 3 built-in formats for different verbosity levels
 - Low, medium, high
- User can add new formats, extend existing
Summary

- Reuse is essential
 - More complex protocols
 - More complex SOCs
- Methodology is essential for reuse
 - Layered approach
 - Virtual sequences
- eRM extensions needed
 - Predictor-based architecture
- Ideas validated on commercial eVCs
 - Ethernet, PCI-Express
- Further info:
 - www.paradigm-works.com