
Development of a PCI Express
Coverage Monitor eVC

Verisity ClubSpring 2003

Stephen D’Onofrio, Ning Guo

OverviewOverview
Why develop a PCI Express Functional
Coverage Monitor eVC
Verisity expedites the development
process
Functional Coverage Metrics of the
Monitor eVC
Bootstrapping eVC development
Metrics
Conclusion

Why develop a Functional Why develop a Functional
Coverage Monitor eVCCoverage Monitor eVC

Smallest reusable subset and reasonable
starting point of the eVC
Easily integrated into verification
environments
Employ the functional coverage features to
enhance the verification process
Springboard to further development of
reusable verification components

Verisity expedites the Verisity expedites the
development processdevelopment process

Verification Vault
Methodology
Tools

eRM refers to “e Reuse Methodology”
Easy Start – packaging
Well organized directory/file structure
Modularity of the code
Messaging/Logging features
eRM compliance

StrategyStrategy
Goals:

Keep it simple
Extensible
Reusable

Process:
Define the objects/aspects:

From the specification nouns become candidates for
structures/units or aspects of a structure/unit
Verbs often translate into operations – methods within the
structure/units

Analysis:
Map your problem into eRM components
Describe operations to be performed by the units/structures
Determine what attributes are common to all structures/units

Relationship:
Determine how the aspets/structures/units will interact

eVC ArchitectureeVC Architecture
PCI_EXPRESS_MONITOR_ENV

Config:
lane_width : x1, x2, x4, x8, x12, x16, or x32

Agent DOWNSTREAM
Agent UPSTREAM

Config:
evc_conig :UPSTREAM_CFG or DOWNSTREAM_CFG

Config:
hdl_path - rtl path.
sig_data - data lane bus
sig_clock - 2.5 GHz clock (xmt clock)

when
Detect

when
Polling

when
Config

when
L0

when
Recovery

when
L1

when
L2

PHY State Machine

 Behavioral Model
(PHY,DLL, and TLP layers)

Monitor

UPSTREAM
DUT

DOWNSTREAM
DUT

lane 1 lane 2 lane 3 lane 32lane 4 ...clk

SERDES INTERFACE

Aspect oriented coding Aspect oriented coding
techniquestechniques

File Partitioning
Create files for objects, aspect of objects, types,
constants, packets
All files are to be imported from one eVC file
(called evc_top.e – part of eRM)
Avoid import cyclical dependencies

Import files using a bottom-top abstraction
approach

i.e. type.e, env.e, agent.e, monitor_receiver.e, …

FILE: agent.e
unit pw_pci_exp_mon_agent_u {

name : string;
// back-pointer
env : pw_pci_exp_mon_env_u;
… agent code …

}
extend pw_pci_exp_mon_env_u {

agent_names : list of pw_pci_exp_mon_agent_name_t;
keep agent_names == {UPSTREAM; DOWNSTREAM};
// agent instantiaition
agents : list of pw_pci_exp_mon_agent_u is instance;
keep gen (agent_names) before (agents);
keep agents.size() == agent_names.size();
keep for each in agents {

it.name == agent_names[index].as_a(string);
// here is the back-pointer assignment
it.env == me; or get_enclosing_unit(pw_pci_exp_mon_env_u);

}

Aspect oriented CodingAspect oriented Coding

Polymorphism In ePolymorphism In e
An object can dynamically change shape at run-time

FILE child_a.e
extend child_object_t: [CHILD_A];
extend CHILD_A parent {

show() {out(“I AM A”)};
};

FILE parent.e

type child_object_t: [];

unit parent {
child_object: child_object_t;
show() is undefined;
…

};

FILE child_b.e
extend child_object_t: [CHILD_B];
extend CHILD_B parent {

show() {out(“I AM B”)};
};

Polymorphism (cont)Polymorphism (cont)

OUTPUT
I am A
I am B

FILE top.e
var my_top : parent is instance;
my_top.child_object = CHILD_A;
my_top.show();
my_top.child_object = CHILD_B;
my_top.show();

};

Dynamic binding

Polymorphism (cont)Polymorphism (cont)
We implemented the PHY State Machine
using polymorphism
The “PHY State Machine” is the parent and
states are the children
Virtual methods where used for
initialization, setting timeouts, processing …

when
Detect

when
Polling

when
Config

when
L0

when
Recovery

when
L1

when
L2

PHY State Machine

Package Data Hiding Package Data Hiding
Version 4.1 adds package data hiding
capabilities via the private, protected, and
package access modifiers

Implicit functional coverage item cannot be
private

Use package modifier instead
Imported packages cannot be inherited!

i.e. could NOT use access restrictions in our
common package

Functional Coverage Functional Coverage
ConceptsConcepts

Functional Coverage Elements
Groups – A set of items which are updated by the same event
Basic Items - One or more coverage signals and/or struct fields
which represent a point-of-interest
Basic Buckets –represent a single value or a range within an item
(for integers and enumerators)

Hit – indicates that an item or bucket coverage definition was
met
Grading – hit/goal – quality of functional coverage
Hole – indicates that a coverage goal was not met
Test Ranking
Extended Functional Coverage Capabilities

Transitional Functional Coverage - Item/Bucket changing from
one value to another
Cross Functional Coverage – Two or more items

Functional Coverage Functional Coverage
Concepts (cont.)Concepts (cont.)

The PCI Express Monitor eVC is limited to “Black
Box” Functional coverage

Visibility into eVC ports to the DUT only
Looks at eVC internals too
Does NOT look at DUT internals

Switch functional coverage on and off
Using functional coverage result

Non-reactive
reactive

Automate coverage hole detection

Functional Coverage Functional Coverage
ImplementationImplementation

Place coverage code in a separate file
Allow users to “extend” functional coverage
Extend banner

Output functional coverage settings and other
configuration information

Could not use the “using per instance” option for transitional
coverage definitions

Use a macro definition as an alternative

Writing transitional coverage
Use the “using ignore not” option to setup valid states
This means “everything is illegal except …”

define <NAME'struct_member>“NAME [<str'exp>]”as { …}

Coverage Metrics Coverage Metrics
ExampleExample

Functional point-of-interest
PCI Express Specification states that SKP

packets can follow TS packets
Derive coverage items from functional

point-of-interest

cover rcv_found_upstream_packet_coverage is {
item pkt_kind;
transition pkt_kind using ignore =
not (prev_pkt_kind == TS and pkt_kind == SKP)

};

Bootstrapping Monitor Bootstrapping Monitor
eVC developmenteVC development

Three tier approach
Developed a transactor eVC package
Used C++ BFM core from Intel Developer Forum

See John Morris’ presentation on C++ interface
at www.paradigm-works.com

Test the monitor at a Beta site
Developed a regression suite
Fault insertion

Prove that the checkers work
Functional Coverage Verification

Prove that the coverage definitions work

Beta SiteBeta Site
Applied Monitor eVC into a pre-existing verification
environment

Monitor eVC package includes examples (part of eRM)
Easy integration process
Configuration makes eVC robust

Verification enhancements achieved by the monitor
eVC

detect coverage holes
modify stimulus to fill coverage holes

helps verify the functionalities
Helped reveal bugs in the monitor

MetricsMetrics
Functional coverage

24 functional coverage group
230 functional coverage definitions

Project Milestones
Architecture/Spec/scheduling – 2 weeks
Monitor – 2 ½ months
BFM Integration – 1 month
Xactor – 2 months
Regression Environment (tests & scripts) – 1 month

Profiling Results from Xactor Test (rough estimates)
Coverage on/Coverage off =>1.0x to1.25x
Interactive/Compiled =>1.2x to 2.85x

Questions/IssuesQuestions/Issues
Naming space
Preferred method of turning on/off
coverage
Common packages and data hiding
C interface issues

Access C++ enumerated data type

ConclusionConclusion
eRM augmented the verification design
process
Monitor uncovered flaws in a third party BFM
Monitor revealed functional coverage holes
at beta site
Next Step – code optimization, new
techniques, etc.

The EndThe End
Contact Information:

www.paradigm-works.com
Paradigm Works
1 Corporate Drive
Andover, MA 01810
stephen.donofrio@paradigm-works.com
ning.guo@paradigm-works.com

