

 Paradigm Works Inc.
 Proprietary and Confidential

 Top Dos and Don�ts for Writing OpenVera Assertions

 Min-Hun Kim

Paradigm Works, Inc.

Min-Hun.Kim@paradigm-works.com

ABSTRACT

Assertions are a compelling verification methodology that is the cornerstone of new, cutting edge
verification techniques. Assertions can catch bugs in HDL during a simulation as a checker. In addition
they can help the designer to encapsulate concepts as embedded specifications, which are useful to formal
property checking tools. Although assertions have existed in one form or another for many years, they
have only been recently utilized to their full potential.

This paper will share a set of coding guidelines that are useful in OpenVera Assertion (OVA) checker
development. Coding guidelines presented here come from a real-life of OVA checker development.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 2 of 20
 Proprietary and Confidential

Table of Contents
1 Introduction...5
2 OpenVera Assertions...5
2.1 OpenVera Assertions Defined ..5
2.2 OVA Characteristics...6
2.3 The Value of OVA in Verification...7
3 Summary of OVA Coding Guideline From Experience ...8
3.1 What To Do...8
3.1.1 Use a Variable, but Use it Wisely ...8
3.1.2 Use bool and event as Often as Possible ...10
3.1.3 Know When to Use check..11
3.1.4 Know When to Use forbid ...12
3.1.5 Use a Pre-defined Operator as Often as Possible ...12
3.1.6 Know When to Use matched and ended..13
3.1.7 Consider the Formal Verification Case in Advance ..15
3.1.8 Use a Meaningful Name for Layer 0 Instantiation...16
3.1.9 Use an Optional Assertion Failure Message...16
3.1.10 Be Careful When a Shift Operator (either << or >>) is Used17
3.2 What Not to Do...17
3.2.1 Do Not Use var in Place of bool...17
3.2.2 Do Not Use a var to Index a For-Loop ..18
3.2.3 Do Not Introduce Duplicate Meanings or Over Specified Rules of Temporal

Expressions in Layer 0..18
3.2.4 Do Not Cascade if-then Statements..18
3.2.5 Be careful of the open-end format...19
4 Conclusions and Recommendations ..20
5 Acknowledgements..20
6 References ...20

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 3 of 20
 Proprietary and Confidential

List of Figures
Figure 1: Sample of Layered OVA Code Structure ...7
Figure 2: Timing Diagram for Figure 1 ..9
Figure 3: Timing Diagram for Optimized code ...10
Figure 4: Flowchart for check formula..11
Figure 5: Flowchart for forbid formula ...12
Figure 6: Timing of event for matched and ended operator..14
Figure 7: Timing diagram for the use of ended operator ..15

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 4 of 20
 Proprietary and Confidential

List of Examples
Example 1: Sample of OpenVera Assertions code syntax..7
Example 2: Use of var in Temporal Expression..9
Example 3: Updated code with Optimized Timing ...9
Example 4: Good use of boolean macro substitution...10
Example 5: When boolean macro substitution was not used..10
Example 6: Good use of event ...11
Example 7: Use of 'check' formula ..11
Example 8: Use of 'forbid' formula..12
Example 9: Incorrect use of 'forbid' formula ...12
Example 10: Use of pre-defined operator..12
Example 11: If not use of pre-defined operator...13
Example 12: More complicated case without using pre-defined operator ..13
Example 13: Use of matched and ended ...14
Example 14: Sample use ended operator ..15
Example 15: Preparing a code for a formal verification..15
Example 16: How to include a header file...16
Example 17: Name change from a module instantiation..16
Example 18: An optional assertion failure message in assert ..17
Example 19: Incorrect use of shift operator..17
Example 20: Correct use of shift operator...17
Example 21: Comparing of usage between bool and var...17
Example 22: Two cases of using var and for-loop ...18
Example 23: Cascaded if-then clause vs. Sequential vs. ?: ...19
Example 24: Open-ended shift format ..19
Example 25: Alternative to Open-ended shift format...19
Example 26: Using Length to limit match expression period...19

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 5 of 20
 Proprietary and Confidential

1 Introduction
ASIC design and verification engineers have been using Assertion-Based Verification (ABV) to some
extent over the past decade. ABV tasks from past design and verification experiences can be divided into
two areas. The first area is the HDL-based checker. This type of checker is needed to observe the
transaction at the interface of a system or a complex state-machine where most functional bugs occur.
The second area is HVL-based functional coverage or scoreboard. These checkers or scoreboards give us
important information regarding the efficiency of the test bench and behavior of the design. However, we
just haven�t seen it get much support from many of our verification colleagues. What is keeping us from
using ABV in a real verification effort? What more do we need to make it really happen?

Such an effort using HDL or HVL does not give the full range of assertion capability due to limitations
inherent to these languages. Traditionally, the main reason the checkers or scoreboards are built with
HDL or HVL-type of languages is that it is easy to combine with an existing design or test bench
environment. It is not easy to learn a new language and methodology in a reasonable time. This barrier
keeps us from using ABV, and we need to break this barrier. It may be a yet another learning curve to
traverse; nevertheless, it is certainly worth going through.

Fortunately a number of EDA vendors, including Synopsys, have been developing tools for ABV. We now
have tools and methodology in place with assistance of major EDA vendors. We now need to have a clear
direction of how to use it to accelerate our practical verification tasks.

2 OpenVera Assertions

2.1 OpenVera Assertions Defined

OpenVera Assertions (OVA) is a high-level language that contains powerful declarative constructs for
accurately capturing design specification that are useful in both dynamic simulation and formal
verification environments. With this language, design and verification engineers describe the target
application environment including complex protocols and data objects at a high level of abstraction. This
high-level approach significantly improves productivity, readability and reusability.

Synopsys announced the Vera Open Source Initiative and the availability of OpenVera� as an open
hardware verification language that included assertions (known as OVA). Later, Intel added their
ForSpec formal verification language to OVA.

In conjunction with this effort, the following companies have been developing Assertion tools focused on
ABV with OVA.

• Synopsys � VCS, VCS-MX, OVAsim and Magellan

• Verisity � Specman Elite

• Aldec � Riviera, Riviera-IPT

• 0-in � 0-In ABV Suite

• @HDL - @Designer, @Verifier

• Novas - Verdi

OVAsim is a PLI based application from Synopsys that allows an OVA module to be compiled and run
with third party simulators. OVAsim works by compiling the OVA module into a shared library object
and by creating a wrapper file in HDL format, which forms the link between the OVA module and
design.

The latest version of the OVA Language Reference Manual (LRM) is 1.3. Please note that OVA is an
evolving language. It is a good idea to look for the latest OVA LRM from www.open-vera.com.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 6 of 20
 Proprietary and Confidential

2.2 OVA Characteristics

According to the OVA LRM, OVA is a declarative language that allows much more concise and easily
created checkers than the procedural descriptions provided by traditional HDLs.

OVA is very helpful in the following ways:

• Sequences can specify precise timing or a range of times.

• Descriptions can be associated with specified modules and module instances.

• Descriptions can be grouped as a library for repeated use.

A typical OVA file consists of several temporal expressions and a single temporal assertion. Temporal
expressions, the descriptions of the event sequences, will check the value change or the value itself in any
Verilog registers, integers or nets. Therefore, they could have two forms of expression, sequential
expression or logical expression. The assertion tells the checker what to do if the described temporal
expression is successful or violated.

A sequential expression is a descriptive format for a series of certain events. According to the OVA LRM,
a sequential expression is defined by combining two or more sequences with temporal operators that
specify a range of possibilities and repetitions of sequence. A sequential expression is defined using the
event clause. The OVA LRM states an event is declared with an identifier to name the expression, and a
sequence expression to specify the relationship for monitoring.

With a sequential expression, the right hand side of a temporal expression must occur in order to assign
such a value to the left side. Example is shown below:

• event data_started_safely : (req_is_granted) #[1..5] ((start_of_frame) && (data_valid));

A logical expression consists of variables with Boolean operators, and returns TRUE or FALSE as part of
their evaluation of the expression. A bool can be treated as a text-macro; therefore, this macro can be
combined as many times as it is needed. In fact, this is a recommended coding style because it improves
the readability of OVA code and decreases the likelihood of logical bugs in the OVA code. However,
whenever a new value is visible with a clock transition, a new TRUE/FALSE value will be calculated and
assigned to the left hand side of the expression. An example is shown below:

• bool data_transfer : (frame == 1�b1) && (^data !== 1�bx);

The basic instruction for testing is a temporal assertion. An assertion specifies an expression or
combination of temporal expressions to be tested. Assertion in OVA comes in two forms, check and fo bid.
The check assertion is used when a valid sequence of events is defined in the temporal expression. The
fo bid assertion is used when an illegal sequence is defined. The che k assertion is a success when the
simulation matches the expression. The fo bid assertion is a success, but a functional failure, when the
simulation matches the expression.

r

r c
r

t

Temporal expressions, temporal assertions, clocks and bool expressions must be grouped together in the
form of a unit. This unit can be connected to a design or test bench through a bind statement. Using bind,
a uni can be connected to a single design module or all of the instantiated design modules. Example 1
shows a sample of an OpenVera Assertion demonstrating several of these keywords.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 7 of 20
 Proprietary and Confidential

unit protocol_checker (logic clk, logic reset, logic transmit, logic ready);

clock posedge clk {
 event ready3: istrue (!transmit && !reset) in (ready ->> ready ->> ready);
 event protocol: if (matched ready3) then #[1..4] (transmit || reset);
 }
 assert c1 : check(protocol);
endunit

bind module top.v : protocol_checker u1 (clk,reset,tran,rdy);

Example 1: Sample of OpenVera Assertions code syntax

Design examples in this exercise and in practical use have been devised using a layered approach.
Checker component development, especially as IP, can benefit greatly from such a coding structure. The
following Figure 1 is included as an Example of the layered approach to coding OpenVera Assertions.

xpression)

DUT
OVA Module

Layer 0: Common booleans,
events and state machines
(Sequential and logical e

Layer 1: Events and Assertions
(temporal assertion, check, and
forbid)

Layer 3: User Interface
(bind, `include and
`define)

Layer 2: Template
instances (Unit and
module)

Figure 1: Sample of Layered OVA Code Structure

2.3 The Value of OVA in Verification

Value in verification checker development using OVA can be found in three ways, re-usability, formal
verification, and efficient and flexible coding.

An assertion checker developed with OVA can be reusable because it was developed based on an industry
standard. In addition, it can be instantiated for each design object as many times as it is needed. It can
run with other simulators, when compiled with OVAsim.

Due to the characteristics of OVA, a temporal expression can be expressed in a compact coding style.
OVA can do multi-threaded checking if it was written using the proper keyword and coding style. A
conventional HDL based checker can only do single-threaded checking. Each assertion can be written as

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 8 of 20
 Proprietary and Confidential

a functional coverage point. This feature is only available from a handful tool vendors including
Synopsys, Inc.

As a part of the formal verification process, a design or verification engineer can capture the design intent
in OVA from the beginning. Another practical reason to use OVA checkers is that OVA checkers can be
safely delivered as Verification IP to customers with the use of source code encryption technology.

3 Summary of OVA Coding Guideline From Experience
Most EDA vendors are introducing an ABV method as a part of their verification suites. It is getting
popular in the Verification field, even being extended to the development of reusable Verification IP for
industry standard designs. This document summarizes what was learned from a Paradigm Works R&D
project regarding what to do vs. what not to do while OVA code is being written. The revision of OVA
LRM referred to in this paper is 1.3.

Although there is an OVA development Guideline published by Synopsys, many of those guidelines did
not really help the author very much in a real world implementation of Verification IP. Therefore, this
document summarizes not only what was learned from this project but also a few topics from the OVA IP
guideline from Synopsys. This will provide the engineer who wants to develop verification IP a more
comprehensive guideline based upon real world experience.

Three fundamental pieces of advice are:

1. Get acquainted to with the pre-defined operators and examples.

2. Break down one rule into a small number of temporal expressions

3. Use check or forb d properly i

y

A big reason for this advice is that OVA coding is not done in a way that is common with how we write
code using other high-level of computer languages, like C/C++, Verilog or VHDL. It is an assertion-based
language, which means that all of basic booleans and variables will be refreshed at each clock cycle
boundary. With this sampling cycle, OVA program behaves like a program with a non-blocking
procedural statement and continuous statement.

3.1 What To Do

There is a limit to what OVA can do. OVA code will look for very specific things within a range specified.
Therefore, what is provided must be a specification of all legal values for the HDL construct being
examined. For instance, an OVA checker to determine if the width of a data bus is 16bits or 32bits wide
is not a meaningful task. However, knowing the bus width in advance it would be meaningful to assert if
part of bus is not driven when it should be.

3.1.1 Use a Variable, but Use it Wisely

The variable (var) will make the OVA code developer very happy. It is the only construct in OVA that can
store and manipulate a specific value to be use at different times during a sequence. However, it is
important to be aware that OVA is not a procedural language. Any value, which was assigned to the left
operand of �<=� sign, is not going to be available to use until the next cycle.

Example 2 shows a conditional statement at line 5 and 6. Each line states that if either start is asserted
or packet_t pe is `WRITE_PACKET, then assign a portion of data_bus information to the left operand of
<= sign, otherwise, keep the old value.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 9 of 20
 Proprietary and Confidential

var [4:0] packet_type;
var [7:0] data_width;
init packet_type = 5�h00;
init data_width = 8�h00;
packet_type <= (start) ? data_bus[4:0] : packet_type;
data_width <= (packet_type == `WRITE_PACKET) ? data_bus[31:24] : data_width;

2 Non-Blocking assignments

Example 2: Use of var in Temporal Expression

When using a non-blocking assignment to access a data in a variable, the packet_type variable at line 6
will have the previous packet_type information from line 5 at any given moment. This can limit the
usage of a variable. Please be aware of non-blocking assignment. Figure 2 shows the value in each
variable and a timing of update of each variable.

8�h10 8�hff 8�hf08�h0f 8�h30

READ READ WRITEWRITE WRITE

READ READ WRITEWRITE WRITE

data_bus[31:2
4]

data_width

packet_type

data_bus[4:0
]

cloc
k

start

8�h308�hf08�h0f8�h00

5�h00

Figure 2: Timing Diagram for Figure 1

Example 3 shows that two non-blocking statements could be combined into one line effectively. This one
line of code will do the exact same thing. New information from data_bus[31:24] for the data_width will
be latched correctly at the beginning.

var [7:0] data_width;
init data_width = 8�h00;
data_width <= ((start) && (data_bus[4:0] == `WRITE_PACKET)) ?

data_bus[31:24] :
data_width;

1 Non-Blocking

Example 3: Updated code with Optimized Timing

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 10 of 20
 Proprietary and Confidential

Figure 3 shows how sampling timing with variable can be changed.

cloc
k

start

data_bus[4:0
]

READ WRITE WRITE WRITE READ

data_bus[31:2
4]

data width

8�h10 8�h0f 8�hf0 8�h30 8�hff

8�h00 8�h0f 8�hf0 8�h30

Figure 3: Timing Diagram for Optimized code

3.1.2 Use bool and event as Often as Possible

 To overcome the limitations on var, two other methods are useful to support OVA coding. They are bool
(boolean) and event. Bool is a simple text substitution, just like a text-macro. No matter how many bool�s
were stacked together, they will be replaced at compile-time. No timing is related to bool expression.

bool valid_data : (^Incoming_data !== 1�bx);
bool valid_parity : ((Incoming_parity ^ 1�b1) !== 1�bx);
bool valid_start : ((incoming_start ~ 1�b1) !== 1�bx);
bool all_valid_input : (valid_data && valid_parity && valid_start);

Example 4: Good use of boolean macro substitution

At the line 4 in Example 4, a logical AND operation is performed between the three Boolean expressions.
Line 4 can be substituted with:

bool all_valid_input : (^incoming_data !== 1�bx) &&
 ((Incoming_parity ^ 1�b1) !== 1�bx) &&
 ((incoming_start ~ 1�b1) !== 1�bx);

Example 5: When boolean macro substitution was not used

 This long line of bool conditions is not recommended, because it is hard to understand and maintain in
the future.

Event can be used in a similar fashion. Please note that event can be observed or controlled from Vera
test bench. Therefore if the test bench needs to control the behavior of an OVA checker, or there is a
special test plan such as an error test, event could help checker to be controlled. Event also can be used to
collect coverage information, such as functional coverage, regarding the occurrence of the bool event.
Example 6 shows several ways of using event. Event e3 and e4 are identical. Event e5 could be used as a
functional coverage statement for PCI bus protocol to detect that a Write followed by a Read to a different
peripheral occurred.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 11 of 20
 Proprietary and Confidential

event e1 : (bus_data == 8�hf7);
event e2 : (bus_data == 8�hbd);
event e3 : (e1 #1 e2);
event e4 : (bus_data == 8�hf7) #1 (bus_data == 8�hbd);

event e5 :(SETUP_WR_SELECT #1
 ENABLE_WR_DSEL #1
 IDLE #1
 SETUP_RD_COV #1
 ENABLE_READ);

Example 6: Good use of event

3.1.3 Know When to Use check

When the correct (or legal) sequence of events is known, then use the che k assertion. If this sequence of
events occurs in the manner as described, no message will be printed in a log file. The assertion will only
fire if the stated order of events does not occur. If the check fails a predefined assertion message will be
printed. The code in Example 7 and corresponding flowchart in Figure 4 describe how the check assertion
behaves.

c

r _c
e

t

event parity_check : if (data_valid) then (parity_valid);
assert event_for_parity : check (parity_check, �parity is not valid�);

Example 7: Use of 'check' formula

Clock

True
Check:Succes

s

True

False

 data_valid ?

 parity_valid
?

False

Failure:messa

Figure 4: Flowchart for check formula

The check will only succeed if data_valid is TRUE, and then parity_valid is TRUE. Event pa ity heck
will be triggered for the assertion statement. If data_valid is false, parity_ch ck will not be considered at
this clock cycle. The check formula does not print any assertion failure message. We will call it a vacuous
success because it gives us the same result as if this assertion was triggered successfully. There is no way
we can distinguish a vacuous success from a true success; however, that is also the nature of check
formula.

A failure message will be displayed only if da a_valid is TRUE then parity_valid is FALSE

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 12 of 20
 Proprietary and Confidential

3.1.4 Know When to Use forbid

When the exact wrong (or illegal) sequence of events known then use of fo bid is recommended. The
fo bid assertion is used to catch a sequence that must not happen. Quite often the use of fo bid is much
easier and clearer than the use of ch k. It is important to avoid any a vacuous successes from a fo bid.
One suggested method is a sequential expression. By combining two or more sequences with temporal
operators, a vacuous success can be avoided.

r
r r

ec r

r

ce_
se c

o e t
r r

r

The following code in Example 8 and corresponding flowchart in Figure 5 describe how the fo bid
assertion behaves.

event not_allowed_events : (sequence_a) #1 (sequence_b);
assert not_allowed : forbid (not_allowed_events, �It is a prohibited sequence.�);

Example 8: Use of 'forbid' formula

Clock

sequence_a #1
False

True

Failure:Message Forbid:Succe

Figure 5: Flowchart for forbid formula

Two clocks of a timing window are used to look for a certain sequence of events, �sequen a, then, one
clock later quen e_b�. It does treat this set of sequences as one group. If this sequence of events occurs,
a named event, n t_allowed_ev n s, will be asserted. This is an event that is not supposed to occur with
fo bid. The fo bid formula will print the optional assertion failure message as a result of the assertion
triggering.

Example 9 also detects a sequence of events. Due to a vacuous success whenever sequence_a is FALSE,
fo bid formula will print the assertion failure message.

event not_allowed_events : if (matched sequence_a) then (#1 sequence_b);
assert not_allowed : forbid (not_allowed_events, �It is a prohibited sequence.�);

Example 9: Incorrect use of 'forbid' formula

3.1.5 Use a Pre-defined Operator as Often as Possible

Concatenation ({}), replication ({{}}), bit-wise operators (~, &, |, ̂and ~)̂ and reduction operators (&, |,
~|, ^ and ~)̂ are very useful. OVA is an assertion-type language that uses non-blocking statements.
Those operators are very useful to complete the operation within one line. Example 10 shows the
usefulness of replication ({}) and reduction operator (|).

bool not_all_data_zeros : (|({data_bus1, data_bus2[15:8]}) === 1�b1);

Example 10: Use of pre-defined operator

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 13 of 20
 Proprietary and Confidential

This code checks a bit in data_bus1 and data_bu 2[15:8] to find any 1�b1. If 1�b1 is in either data_bus1 or
portion of data_bus2, it will set not_all_data os to TRUE. This can also be achieved by using the
logical expression shown in Example 11.

f 1�b1 is in either data_bus1 or
portion of data_bus2, it will set not_all_data os to TRUE. This can also be achieved by using the
logical expression shown in Example 11.

s
_zer

t e

t e
e

e

_zer

t e

t e
e

e

bool not_all_data_zeros : (data_bus1[16] | data_bus1[15] | ... | data_bus2[8])
=== 1�b1);

Example 11: If not use of pre-defined operator Example 11: If not use of pre-defined operator

Using the pre-defined operator greatly simplifies the expression. It can be even more complicated if a for-
loop method with a loop counter is used. Example 12 shows how much more complicated it could be.
Using the pre-defined operator greatly simplifies the expression. It can be even more complicated if a for-
loop method with a loop counter is used. Example 12 shows how much more complicated it could be.

data_bus1_not_all_zeros[0] : data_bus1[0] === 1�b1;
for (counter = 1; counter <=15 ; counter = counter + 1)
{
 data_bus1_not_all_zeros[counter] : data_bus1[counter] ||
 data_bus1_not_all_zeros[counter - 1];
}

data_bus2_not_all_zeros[0] : data_bus2[8] === 1�b1;
for (counter = 1; counter <=7 ; counter = counter + 1)
{
 data_bus2_not_all_zeros[counter] : data_bus2[counter + 8] ||
 data_bus2_not_all_zeros[counter - 1];
}

bool not_all_data_zeros : data_bus1_not_all_zeros[15] |
 data_bus2_not_all_zeros[7];

Example 12: More complicated case without using pre-defined operator Example 12: More complicated case without using pre-defined operator

3.1.6 Know When to Use matched and ended 3.1.6 Know When to Use matched and ended

In a typical system, more than one clock can control a data transfer between modules. When signals from
multiple clock domains are used within an OVA module, it is important to use the appropriate operator,
ma ch d or ended, to establish a temporal assertion correctly. According to the OVA LRM, use matched
operator if the event and operator are from different clock domains to build the sub-expression. Use
ended operator, if the event and operator are within the same clock domain to build the sub-sequence
expressions.

In a typical system, more than one clock can control a data transfer between modules. When signals from
multiple clock domains are used within an OVA module, it is important to use the appropriate operator,
ma ch d or ended, to establish a temporal assertion correctly. According to the OVA LRM, use matched
operator if the event and operator are from different clock domains to build the sub-expression. Use
ended operator, if the event and operator are within the same clock domain to build the sub-sequence
expressions.

Since the ma ch d operator could have an operand either from the other clock domain or the current
clock domain, match d operator asserts an event at the nearest future clock tick in the current clock
domain. As the ended operator has its operand from a single clock domain only, end d operator asserts
an event at the same clock tick in the current clock domain. The following code in Example 13 and
corresponding timing diagram in Figure 6 describe a possible usage of matched and ended, with a timing
diagram. It is important to understand the timing of events when both the matched and ended
operations are used in the same clock domain and the matched operator is used over a different clock
domain.

Since the ma ch d operator could have an operand either from the other clock domain or the current
clock domain, match d operator asserts an event at the nearest future clock tick in the current clock
domain. As the ended operator has its operand from a single clock domain only, end d operator asserts
an event at the same clock tick in the current clock domain. The following code in Example 13 and
corresponding timing diagram in Figure 6 describe a possible usage of matched and ended, with a timing
diagram. It is important to understand the timing of events when both the matched and ended
operations are used in the same clock domain and the matched operator is used over a different clock
domain.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 14 of 20
 Proprietary and Confidential

clock posedge clk1 {
 event e0 : sequence_e0;

 event matched_e2 : if (matched e0) then #1 (sequence_e1);
 event ended_e3: if (ended e0) then #1 (sequence_e1);
}

clock posedge clk2 {
 event e5: sequence_e5;

 event matched_e7 : if (matched e0) then #3 (sequence_e5);
}

Example 13: Use of matched and ended

�matched� is used
within the same
clock domain

clk1

e0
e1

�ended� is used
within the same
clock domain

matched_e2

ended_e2

clk2

e5 �matched� is used
within the other
clock domain matched_e7

Figure 6: Timing of event for matched and ended operator

If the right hand side contains mat h d or ended on an event, it will be evaluated before the expression is
evaluated. If either ma h d or ended is used the paired event with matched or ended has to be evaluated
at that moment.

c e
tc e

f
rt_

rt_ _

The following code in Example 14 and corresponding timing diagram in Figure 7 describe two event cases
for the use of lexical operator and one event case for the use of ended operator. Event full_e1 and ull_e2
do the same thing. Four clocks after sta e, another event expression is invoked to look for (a==3) &&
(b==4). Also note that for event full_e3 after 4 clock ticks from sta e, only a success or failure of (sub e)
event will be searched and considered.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 15 of 20
 Proprietary and Confidential

clock posedge clk {
event sub_e : (a==3) && (b ==4) #2 (a==5) && (b ==6);
event full_e1 : start_e #4 sub_e #4 finish_e;
event full_e2 : start_e #4 ((a==3) && (b==4)) #1 ((a ==5) && (b==6)) #4 finish_e;
event full_e3 : start_e #4 (ended sub_e) #4 finish_e;

}

Example 14: Sample use ended operator

clk

start_e
finish_e

1 3 5 7 9a
Only interested in
assertion of event
by ended operator

2 4 6 8 10b
sub_e

(ended sub_e) Start to look for
(a==3) && (b==4).

Then, not
successful

full_e3

#4full_e2/full_e1

Figure 7: Timing diagram for the use of ended operator

3.1.7 Consider the Formal Verification Case in Advance

In general, the test bench is compiled and run using four states in simulation. If it is planed to use OVA
modules as verification IP, please take into account the fact that the formal verification tools use two
states. Using compiler directives to resolve two state simulations versus a conventional four state
simulations is necessary. The following Example 15 shows that there is no check for �X� status in 2-state
simulation.

`ifdef two_state_simulation
// Do nothing due to 2-state

`else
bool valid_data : (^Incoming_data !== 1�bx);

`endif

Example 15: Preparing a code for a formal verification

A compiler directive, tw ate_verification, can be specified in a header file. Usually the header file that
contains such compiler directives needs to be compiled only once. The following code in Example 16
shows how header files can be included in OVA code once through multiple file structure.

o_st

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 16 of 20
 Proprietary and Confidential

`ifdef HEADER
`else

`define HEADER
`include �../OVA/csix_l1_32xNbits.ovah�

`endif

Example 16: How to include a header file

3.1.8 Use a Meaningful Name for Layer 0 Instantiation

The instantiated name will be used in a hierarchical path with an assertion failure message when an
assertion failure message is printed to a log file. Additionally, when a bool, event and var are defined
adding a suffix to each variable is recommended. When the OVA module is getting larger, it is hard to
know which one is defined as bool, event and var by looking at the name of variable. Therefore, _b for a
bool variable, _e for an event variable and _v for var variable are recommended.

The following Example 17 shows how to instantiate a template and how the name can be used
throughout a hierarchical structure of OVA code.

Layer 0:
template one_bus_check (�,xyz1_b,�,xyz2_e,�);
�
�
Layer 1:
template bus_status (clk) : {
 clock posedge clk {
 event � bus_check1_xyz1_b�;}
 clock posedge clk {
 event � bus_check2_xyz2_e�;}
}
�
Layer 2:
unit bus_check (�);
one_bus_check bus_check1 (�);
one_bus_check bus_check2(�);
�

2. Use xyz1_b and xyz2_e
with each instantiated
name, bus_check1 and
bus_check2. (�_� is
attached, automatically.)

3. Both bus_check1
and bus_check2 are is
one of instantiated
name

1. Original template name
is one_bus_check ().
xyz1_b is bool. xyz2_e is
event

Example 17: Name change from a module instantiation

3.1.9 Use an Optional Assertion Failure Message

An assertion statement can only print a constant string passed as an optional parameter to the as t
statement. This string should indicate a clear reason for a failing assertion. A string should have a short
but meaningful content with a rule number. Please note that the assert statement should be in one line
without any delimiter.

ser

There is a way to print any message with data using some API � PLI code in C, refer to the OVA LRM for
details. In general, use the following format shown in Example 18 to print an optional failure message
into the log file.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 17 of 20
 Proprietary and Confidential

assert Rule_P42 : forbid (rule_ev_parity_error,
�Rule P42. TxPar vector is a horizontal odd parity�);

Example 18: An optional assertion failure message in assert

3.1.10 Be Careful When a Shift Operator (either << or >>) is Used

 buffer <= (reset) ? 0 : (data << counter);

Example 19: Incorrect use of shift operator

A left-shift operator << will drop the bits off the left operand, while it is shifting an operand to the left.
This is also the way of Verilog/VHDL work. In Example 19, the left most bit will be dropped as the shift
operator pushes a bit to the left.

To avoid this situation, the operand has to be a prefixed by a sufficient number of 0�s. There is no way of
dynamic re-sizing such an appending vector of 0�s. It is better to add a large, but not unreasonable,
number of 0�s. Example 20 is a better way to shift a data into a variable.

 buffer <= (reset)? 0: {128�b0, data} << pointer);

Example 20: Correct use of shift operator

3.2 What Not to Do

This section is written for verification engineers who have experience in high-level HDL/HVL languages
but little or none of the assertion-specific language experience, such as OVA. Each of these items could be
an easy mistake and a hard-to-find error, because of previous experience of HDL/HVL coding, and
making us blind to the assertion coding style. However, as new features are added, and OVA compiler is
being enhanced, it can be easier to write. Unless you use an OVA debugger (available from various
vendors), it may be hard to locate logical errors.

3.2.1 Do Not Use var in Place of bool

During the initial coding stage, it may be preferable to use bool and event rather than var. If var is used,
the user must be careful about timing. When a value is assigned to var, a newly assigned value will not
be available to use until the next clock event.

For instance, examine the following OVA code in Example 21. The code in each column is doing the same
thing, i.e. parity checking by comparing a calculated parity with a parity line.

bool parity_error : (parity_line !==

!(^data_bus));

var parity_error;
init parity_error = 0;
parity_error <= (parity_line !=
 !(^data_bus));

 VS.

Example 21: Comparing of usage between bool and var

The OVA code in left column is using bool to check for parity errors and store even parity information.
The OVA code in right column can get the same information in a format of one or zero at va
parity_error. However, it is not possible to have updated parity_error information until the next clock
tick.

r

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 18 of 20
 Proprietary and Confidential

If at all possible, try to break the rule into smaller events and bools so that each OVA line can be a less
complicated temporal expression. By combining these smaller events and bools, it is easier to build a
clean temporal assertion.

3.2.2 Do Not Use a var to Index a For-Loop

The OVA variable, var, cannot be used as a control variable in a for-loop. According to the OVA LRM, all
conditional expressions must be constant types with known values during OVA compile. Since a for-loop
is processed at compile-time, a parameter and constant are only things that can be used in an initial
statement, condition and step assignment of for-loop.

Example 22 shows two examples. Each example has the same concept with a for-loop statement.
However, only the right side example can be compiled successfully.

var [7:0] start;
var [7:0] max_value;
var [7:0] increment;
init start = 0;
init max_value = 30;
init increment = 1;

var [max_value-1:0] Memory;
for (i=start; i<max_value; i=i+increment)
{
 Memory[i] <= i * 8;
}

VS.

`define start 0
`define max_value 30
`define increment 1

Memory[0] : `start * 8;
for (i= `start+1; i<`max_value; i=i+`increment)
{
 Memory[i] <= i * 8;
}

Example 22: Two cases of using var and for-loop

3.2.3 Do Not Introduce Duplicate Meanings or Over Specified Rules of Temporal Expressions in
Layer 0

During compilation of a compliance list, the duplicate meaning of temporal expressions can be written
many times at Layer 0. The reason could be many temporal assertions are required to be started or
ended with a certain set of signals.

For instance, one temporal expression using dev el and frame could provide the necessary indication of
starting point of PCI bus transaction. Named temporal expressions can be re-used in multiple places.
Performance can be improved by removing any duplicate meaning of temporal expression.

s

-t -t e

o -t e
c

t

It is important to check that the temporal expressions do not impose any additional rules other than
what the design specification states. In the case of assertion-checker development for verification IP, it is
crucial not to impose any rules.

3.2.4 Do Not Cascade if-then Statements

Due to the nature of vacuity contained in if hen statement, usage of if h n statement has to be limited
to the last stage of temporal expression. If a conditional statement has to be used, conditional operator, ?-
:, or sequential expression is recommended. Example 23 shows two other ways of describing a conditional
statement.

Because of a vacuous success from the if <bo lean> condition from if h n clause, a success from if
<boolean> will make the cascaded if < ondition> become true. A true condition in the case from the
cascaded if <condi ion> could generate a false negative of an assertion. To avoid such a vacuity with the
if-then statement, always use the sequence format.

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 19 of 20
 Proprietary and Confidential

a) cascaded if-then statements.
event X : if (posedge a) then (b == 1�b1);
event Y : if (matched X) then #1 (c == 1�b1);

b) Using sequential expression
event X: (posedge a) (b == 1�b1);
event Y: if (matched X) then #1 (c == 1�b1);

c) Using a conditional operator, ?:
event X : (posedge a) ? (b == 1�b1) : (b !== 1�b1)
event Y : if (matched X) then #1 (c == 1�b1)

Example 23: Cascaded if-then clause vs. Sequential vs. ?:

3.2.5 Be careful of the open-end format

Longer compile and run times may be experienced when an OVA checker specifies an event with a start
and end time in the sequence format. Example 24 uses the open-ended format.

 event e1 : xyz1 #[t1�] xyz2 #[t1 �];

Example 24: Open-ended shift format

Although it is may be necessary to use the open-ended format, try to use a variable to define the start/end
of a time sequence as an alternative to this long time shift. Example 25 uses a variable to control the
open-end format.

t1_valid_period <= ((frame_) && (data_A_valid)) ? `FALSE : `TRUE;
t2_valid_period <= ((frame_) && (data_B_valid)) ? �FALSE : �TRUE;

event e1 : (xyz1 && (t1_valid_period)) #[t1�] (xyz2 && (t2_valid_period)) #[t2�];

Example 25: Alternative to Open-ended shift format

Use the len h operator if an open-ended time specification is needed. Leng h will limit the time period
for the match of an expression. Example 26 shows that a sequence, xyz1 and xyz2, will be only checked
from t1 to t3 even though both sequences could happen from t1 time to the end of simulation. If both xyz1
and xyz2 do not complete in between time t1 and time t2, event e1 will not be asserted.

gt t

event e1 : length [t1..t3] in xyz1 #[t1�] xyz2 #[t1�];

Example 26: Using Length to limit match expression period

Top Dos and Don�ts for Writing Open Vera Assertions

SNUG Boston 2003 Paradigm Works Inc. Page 20 of 20
 Proprietary and Confidential

4 Conclusions and Recommendations
The project mentioned throughout this paper took seven months from the learning of OVA and H/W
specification to the complete set of OVA checker development. It was concluded successfully.

Although it only took two months to learn basic concepts of OVA and build a test bench for development,
it took about five months to complete OVA coding. The most difficult thing to overcome was a lack of
examples and coding guidelines. Functional limitation of the early version of OVA compiler was also an
important delay factor of development; however communications with Synopsys technical support were
very helpful to find any workarounds or examples.

These coding guidelines will help in the understanding of the OVA language without going through time-
consuming learning curve. In addition, guidelines also help to understand and write OVA code better.
Using a carefully selected set of these coding guidelines could produce OVA code that is more readable,
maintainable and reusable code. The fundamental steps for OVA coding are

• Get acquainted with pre-defined operators and expressions

• Break down one rule into small pieces of temporal expressions

• Follow the layered implementation approach

• Combine those temporal expressions together

• Use check and forb d properly i
Although all of guidelines may not be helpful for some of engineers, most of guidelines are helpful to
improve the efficiency of coding and reduce schedule overheard.

5 Acknowledgements
Four engineers gave valuable feedback to this project from the beginning. Many thanks to my colleagues,
Bob Ionta and Hermant Mallavaram, at Paradigm Works, Inc. for their time and initiatives. Without a
doubt, both Haihui Chen and Edward Cerny at Synopsys, Inc. gave technical advice and examples at
every obstacle during this project.

6 References
1. OVA IP Development Guidelines, Synopsys, Inc., August 5, 2002

2. OpenVera � Language, Reference Manual: Assertions, Synopsys, Inc., March 2003

3. OVA Customer Training Slide, Synopsys, Inc., June 2002

4. OpenVera website: http://www.open-vera.com

5. Tutorial B, OpenVera Assertions: Synopsys SmartVerification Seminar, May 2002

http://www.open-vera.com/

	Introduction
	OpenVera Assertions
	OpenVera Assertions Defined
	OVA Characteristics
	The Value of OVA in Verification

	Summary of OVA Coding Guideline From Experience
	What To Do
	Use a Variable, but Use it Wisely
	Use bool and event as Often as Possible
	Know When to Use check
	Know When to Use forbid
	Use a Pre-defined Operator as Often as Possible
	Know When to Use matched and ended
	Consider the Formal Verification Case in Advance
	Use a Meaningful Name for Layer 0 Instantiation
	Use an Optional Assertion Failure Message
	Be Careful When a Shift Operator (either << or >>) is Used

	What Not to Do
	Do Not Use var in Place of bool
	Do Not Use a var to Index a For-Loop
	Do Not Introduce Duplicate Meanings or Over Specified Rules of Temporal Expressions in Layer 0
	Do Not Cascade if-then Statements
	Be careful of the open-end format

	Conclusions and Recommendations
	Acknowledgements
	References

