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Abstract 
 
This paper will show how Specman Elite was 

effectively used to verify a 6-port switch ASIC in a critical 
time-to-market situation. The goals of the project were to 
1) develop a test environment quickly in order to get 
immediate test results, 2) build a reusable, maintainable 
environment that could be used for different versions of  
the ASIC, and 3) make effective use of directed-random 
stimulus in the testbench. The system under test was a 6-
port switch ASIC. There was much complex functionality 
to test on this ASIC including flow control, upstream 
traffic arbitration, a proprietary physical layer, and error 
detection/recovery.  The testbench consisted of multiple 
port transactors, a microprocessor transactor, 
scoreboards for the port and the microprocessor 
interfaces, several internal monitors and checkers, and a 
packet generator. The project concluded very successfully 
with a first-pass working ASIC. 

 
 
1. Introduction 
 

This paper describes an ASIC verification project that 
used Specman Elite (e) as the primary verification 
language. The system under test is a 6-port switch ASIC 
that was coded using the Verilog HDL language. The 
goals of the verification project (aside from producing a 
first-pass successful ASIC) were to 1) develop a test 
environment quickly in order to get immediate test 
results, 2) build a reusable, maintainable environment that 
could be used for different versions of the ASIC, and 3) 
make effective use of directed-random stimulus in the 
testbench. Specman e was chosen as the verification 
language since it appeared capable of meeting these goals. 
The success of the project depended on the efficient use 
of a revision control system, a thorough written test plan, 
and realistic completion criteria (which were established 
at the outset of the project). 

 
2. System under test 
 

The system under test is called the Switch ASIC. It is a 
6-port device that supports bidirectional data streams 
running at 1 Gbps at each port. The main functions 
performed by the Switch ASIC are as follows: 

 
• Switches downstream packets to the output port 

for which they are destined; 
• Provides a large amount of downstream packet 

buffering to accommodate traffic shaping; 
• Allows the replacement of the upstream physical 

layer port with the C5-DCP, a network 
processor, over a modified GMII port; 

• In the upstream direction it supports the 
multiplexing of five traffic streams each carrying 
1 Gbps onto a 1-Gbps output port. It can also be 
configured to support multiplexing of four 100-
Mbps input ports and a 1-Gbps input port onto a 
1-Gbps output port;  

• Provides on-chip queuing based on four 
priorities (QoS classes) in the upstream 
direction, enabling services requiring low 
latency, jitter, and packet loss; 

• Minimizes packet loss by implementing priority-
based flow control in the upstream direction; 

• Incorporates intelligence into the network by 
integrating a PowerPC processor on the board, 
allowing for the creation of managed networks; 

• Implements a weighted round robin (WRR) 
scheme to ensure that unsubscribed bit rate 
(UBR) bandwidth is shared fairly between users;  

• Transports standard link layer Ethernet packets 
across the Narad physical layer. 

 

In general, downstream traffic enters the Switch ASIC 
from the upstream port at speeds up to 1 Gbps. This 
traffic is switched to any of the five egress ports and/or a 
processor port. Four egress ports can be used at 1 Gbps, 
or five ports can be used when a single port is at 1 Gbps 
and the other four ports are running at 100 Mbps. In the 
upstream direction, traffic enters the Switch ASIC from 
four or five ports depending on the configuration. The 
traffic is aggregated and prioritized and sent upstream on 
the single upstream egress port. Traffic can be monitored 
by the onboard microprocessor, which can additionally 
insert traffic into the upstream path. 

 
3. Verification tools and testbench 

 
The following verification tools were used on this 

project: 
 

• Specman Elite; 
• VCS; 
• Covermeter; 
• Virsim; 
• LSF (job batch system); 
• CPU farm (16 processors); 
• Perl-based run/regress scripts; 
• CVS for source code control; 
• JitterBug for bug tracking. 
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Most of these tools were chosen based on price and 
industry standards. (There is little reason to spend money 
on tools that can be used for free: Perl, CVS, and 
JitterBug.)  

The testbench itself consists of the following modular 
components: 

 
• Port transactor (×6); 
• Microprocessor transactor; 
• GMII transactor; 
• Port/microprocessor scoreboards (×7); 
• Internal monitors/checkers (upstream, 

downstream, dropped packets, arbitration); 
• Testbench ASIC configuration file; 
• Packet generator; 
• Top-level testbench code. 

 
The port transactor (bus functional model) is 

responsible for generating packets and driving them onto 
the port interface of the ASIC. Every packet generated is 
placed on the scoreboard for that port for later checking. 
The port transactor also receives packets from the ASIC 
and puts these on the scoreboard to be checked. The 
upstream port transactor is slightly different from the 
downstream port transactor because of flow control 
issues. The upstream scoreboard is also a little different 
from the downstream scoreboards because packets headed 
upstream act differently than packets headed downstream 
(routing downstream, aggregating traffic upstream). 

The microprocessor transactor is responsible for 
sending and receiving packets just as the port transactor 
does. It also implements the ASIC configuration and 
setup routines, contains an interrupt monitor for checking 
and responding to interrupts, and is available to the test 
for accessing the ASIC. 

The scoreboards receive transmit and receive packets 
from each port and microprocessor transactor. Since there 
is source port information embedded in the data of the 
packet, the scoreboard is able to determine where the 
packet came from and can check every byte of data. The 
scoreboard also receives information from each of the 
internal monitors and checkers to deal with dropped or 
stalled packets. Of course, any packets that are left over in 
the scoreboard at the end of simulation might indicate an 
error. 

The testbench and ASIC configuration code is based 
on a single configuration file that contains information 
about every ASIC and testbench configuration. New 
configurations are simple to add since only the differences 
between the base configuration and the new configuration 
need to be specified. A Perl script is used to parse the file 
and generate the appropriate e file to include at the top 
level of the testbench. This e file contains a set of defines 
for each ASIC configuration register, in addition to some 
testbench defines. Each ASIC register definition contains 

read/write, hard reset, soft reset, and default value 
information. There are four basic configurations of the 
Switch ASIC defined. These configurations are different 
combinations of port speeds and numbers of active ports.  

The packet generator is essentially a struct that defines 
an Ethernet packet with the additional physical layer and 
proprietary embedded control information. Packets are 
generated on the fly by the transactors based on default 
constraints or constraints imposed by the test itself. 

The unit concept is used to create all of the transactors 
and checkers, as well as the top level of the testbench. 
Each of the transactors, checkers, and monitors is 
instantiated at the top level. The hdl_path of that 
particular entity is set at the top level. Therefore, each 
low-level unit does not need to know anything about how 
it actually fits into the hierarchy of the Verilog 
environment. 

Most of the tests developed for this testbench are 
directed-random tests. The user specifies the number of 
packets to be generated on each port (via a constraint), 
and also specifies any other constraints to be modified or 
added. The most simplistic test is a mere dozen lines of 
code that essentially specify the number of packets per 
port. Since Specman allows the user to override or modify 
existing constraints or to add new constraints, it is easy 
for the test writer to modify the behavior of the testbench. 
The more tightly everything is constrained, the more 
directed the test becomes. The timing and content of 
every packet can be controlled by the test. This, combined 
with easy access to the RTL itself and to the 
microprocessor interface,  allows for completely directed 
tests if desired. 

Figures 1 and 2 illustrate how the Switch ASIC fits 
into the testbench in this environment. 
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Figure 1   Testbench/DUT block diagram 
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Figure 2   Testbench 

 
4. Interesting items to test 

 
There are several interesting features of the Switch 

ASIC that required significant testing. These include flow 
control, arbitration, the physical layer, and error 
detection/recovery. 

The Switch ASIC implements flow control in the 
downstream direction (i.e., upstream ports are allowed to 
flow control downstream ports). This is necessary because 
there can be 4 Gbps of data heading upstream into a 1-
Gbps pipe. We needed to test the ASIC�s response to flow 

control from upstream and also verify that flow control 
information heading downstream was generated properly. Port Transactor / 

Scoreboard 
GMII Transactor

/ Scoreboard The Switch ASIC implements a complex arbitration 
scheme for traffic headed upstream. Packets of different 
QoS classes are given different priorities, and only the 
highest priority traffic is allowed to travel upstream 
through the ASIC. The complete arbitration mechanism is 
fairly complex and required a significant amount of code 
to model. 

PHY I/F (×1) Switch 
ASIC 

GMII I/F (x1)

The physical layer is the next major item to be tested. 
The Switch ASIC implements a complex framing 
mechanism on the physical layer. Ethernet packets are 
packed into frames containing carrier, symbol 
synchronization, SFD, and payload. In addition to the 
Ethernet payload, there is an additional small payload on 
every frame that contains control information for the 
network. On transmit, the physical layer interface takes 
the framed data, scrambles it, breaks the bytes into 16-
QAM symbols, then scrambles the signs of the symbols 
before passing the symbols on to the analog portion of the 
transceiver. The converse of this happens on the receive 
path. 

Memory 
 

Upstream Down- 
stream 

PHY I/F (×5) CPU I/F 

Port Transactor / 
Scoreboard (×5) 

CPU Transactor / 
Scoreboard 

Finally, the Switch ASIC implements several 
mechanisms for error detection and recovery, including 
both physical line errors and internal RAM errors. 

 Top Level Testbench DUT 
5. Packet generation and flow control 

 
The standard packet in this environment is an Ethernet 

packet with an additional 2-byte header (length and 
CRC), an additional N-byte embedded control field, and a 
recalculated CRC. None of the Ethernet data is actually 
used by the Switch ASIC. All switching is done based on 
the N-byte embedded control field. The packet is defined 
by a struct, and all of the struct fields can be constrained 
by either the testbench or by the test itself. In addition to 
the data items that are part of the physical packet, there 
are many items that are used only for control of the packet 
generation and randomization. For example, the packet 
structure contains switches that allow generation of 
length/header CRC errors, bad length errors, and data 
CRC errors.  

Since frames are streamed constantly from the ASIC, 
they may or may not contain valid packets. They do, 
however, always contain valid out-of-band (OoB) data 
every M bytes. Contained in this OoB data is the flow 
control information. The OoB data is defined by another 
struct that can be easily constrained by the testbench (or 
test). The frame itself is not defined by any structure but 
is created on the fly by the port transactor as it generates 
packets to send to the ASIC. 

The port transmit transactor is responsible for actually 
generating the packets, framing them, converting the byte 
stream to symbols, and then sending them to the ASIC. 
The port receive transactor does the converse: it grabs 

Port xactor (×6) 

CPU xactor 

Internal 

Test 

Configuration 

Scoreboard 

Scoreboard 
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data off of the wire, converts the symbols back to a byte 
stream, deframes, and then repacketizes the data. There 
are a few things that the test can control in the transactor. 
These are the interpacket gap (IPG), flow control, and the 
interface speed (1G/100M). The latter is actually more 
under the control of the testbench configuration routines. 

The constraints used on the packet, the OoB data, and 
the port transactor are typically soft constraints, which 
means that they can be easily overridden by the test. 
Many of these constraints are also tied to the speed of the 
port (1G/100M). The test or testbench may also want to 
control these constraints on a port-by-port basis (e.g., 
different traffic patterns on each port). This is 
accomplished by using e�s implication operator in the 
constraint generation, (e.g. keep port == 6 => soft 
bad_crc == FALSE;). 

The flow control byte is defined as part of the OoB 
data structure. The Switch ASIC enables flow control by 
transmitting flow control bits in the OoB data to a 
downstream node. The port receive transactor is 
responsible for grabbing the flow control information 
from outgoing frames from the Switch ASIC and passing 
this information to the port transmit transactor. If flow 
control is set for a particular queue, then no traffic will be 
generated for that queue (QoS value). When the port 
transmit transactor is emulating the upstream port, it can 
set flow control to the Switch ASIC. Using constraints 
and extensions of existing data structures allowed us to 
easily add functions that tie together the IPG and flow 
control properties of the transactor to the embedded 
control field in the packet. 

 
6. Error generation 

 
In general, there are several methods of error injection 

in any test environment. In this environment we mainly 
use three of those methods: 

 
• Allow constraints to be modified by the test or 

testbench (e.g., keep length < 64).  
• Add an enable/weight function for a particular 

error (e.g., keep crc_error == select [20:TRUE; 
80:FALSE;]). 

• Extend an existing structure definition to modify 
existing functions or to add a post_generate() 
method. 

 
 Specific error mechanisms used in this environment 

are as follows. There are flags in the packet definition to 
enable CRC errors (both Ethernet and length/header) and 
bad length errors. Runts and oversized packets are 
generated by simply adjusting the length constraint on the 
packet. Runt packets can cause problems with the CRC 
generation and packing functions of the packet structure. 
Therefore, additional code in the packet structure is 

needed to compensate for this. Errors on the embedded 
control field of the packet are generated by extending the 
post_generate() method of the packet structure. Bad flow 
control and IPG is handled by constraints in the port 
transactor. Finally, there is always the option of 
monitoring and forcing a HDL net to achieve the error 
condition. This was done in our environment mainly to 
inject internal RAM errors. 

Many errors and other combinations of parameters are 
only valid on certain ports (e.g., the microprocessor port 
will never have CRC errors because it is considered an 
on-board port). Specman�s implication operator is ideal to 
use for this condition. It allows us to modify constraints 
only on specific ports or only after other constraints have 
been met. 
 
7. Internal monitors 

 
There are several internal chip monitors in this 

testbench, including: 
 

• Upstream QoS; 
• Upstream packet drop; 
• Downstream arbitration; 
• Downstream routing; 
• Downstream packet drop. 

 
 The rationale behind peeking into the ASIC is simple. 

In this particular system it is difficult to predict which 
port a packet should come out of the chip on and when it 
should actually come out. In order to predict this, we 
would have to model all of the internal pipeline delays 
throughout the entire ASIC. Instead, by monitoring 
internal interfaces we can correlate between packets seen 
internally and the packets on the external interface. 
Unique identifiers within each packet are monitored as the 
packet traverses the logic.  Logs containing these 
identifiers assist with isolating missing packets rather than 
always looking at waveforms.  Specman is not necessarily 
any better at doing these tasks than any other high-level 
language would have been, except for its ability to easily 
monitor any HDL net by simply quoting the signal name. 

The upstream QoS monitor receives the data from the 
upstream memory RTL interface and checks the QoS 
functions: on-chip queuing based on four QoS classes and 
the WRR scheme that handles the lowest priority UBR 
bandwidth. 

 The downstream arbitration monitor is written in C. 
Specman allows easy access to C routines, thus easing 
any potential problems. The downstream arbitration 
monitor is written this way because C is in general much 
faster than e and we wanted to test the downstream arbiter 
in a stand-alone setting before the remainder of the chip 
was ready. The drawback to integrating C is the lack of 
visibility into the C code with the Specman debug tools.  
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C debuggers were not attempted simultaneously with the 
Specman toolset.  The goal of this monitor is to predict at 
a cycle-accurate level what the arbiter should be doing. 
The inputs and outputs of the arbiter are monitored, the 
inputs are correlated and checked against traffic sent into 
the Switch ASIC, the prediction is made based on these 
inputs, and finally the outputs of the monitor are checked. 

The downstream routing monitor is used to verify that 
the downstream packet gets routed to the correct 
destination port. It has its own model of the routing table 
and verifies that the ASIC does the correct thing. 
Additionally, it is used to help the external scoreboards 
check their data. The scoreboard simply asks the 
downstream routing monitor if this particular packet 
should have ended up at this port before doing the data 
checking. 

The drop packet monitors (both upstream and 
downstream) are used only to help the packet scoreboards 
do their jobs. Predicting which packet would be dropped 
(either upstream or downstream) was deemed too 
complicated even when looking at the internals of the 
ASIC. The packet scoreboards, however, still need to 
know which packets are being dropped. If there is a 
problem in the chip where too many packets are being 
dropped, it would be detected by the external bandwidth 
monitors that sat on each of the ports. 

 
8. Meeting our goals 

 
As stated earlier, the goals of the project (in addition to 

having working silicon at the end) were to 1) develop a 
test environment quickly in order to get immediate test 
results, 2) build a reusable, maintainable environment that 
could be used for different versions of the ASIC, and 3) 
make effective use of directed-random stimulus in the 
testbench. 

The first goal was handily met. We had a basic, useful 
testbench up and running in 4 weeks. This testbench 
included most of the major pieces of functionality in the 
testbench (port transactors, microprocessor transactor, 
packet generation, drop packet monitor, upstream and 
downstream monitors, and scoreboards). This 
accomplishment would not have been possible without 
the use of a high-level verification language. Even using 
C or C++, we would had to have written a large number 
of PLI access routines in order to access the ASIC. With 
Specman, this is all taken care of behind the scenes so that 
we could focus on writing the transactors and checkers. 

The second goal of the project was easily met as well. 
All of the testbench pieces are fairly modular and can be 
pulled from the testbench with little effort. This was a 
significant bonus when it came time to put together an 
environment for the FPGA port of the Switch ASIC. The 
FPGA version of the device had multiple FPGAs, 
different clock speeds, different number of ports, and 

different size memories. Because of the modular nature of 
the Specman components in the testbench, we were able 
to pull together this environment in short order.  

Our third goal, to make effective use of directed-
random stimulus, was also met. Verifying today�s ASICs 
is a significant challenge, and directed testing often falls 
far short. Random testing is necessary to hit all of the 
nasty corner cases in the design that the verification 
engineers cannot think of. Using Specman not only 
allowed us to easily generate random stimulus, but also 
enabled us to direct this stimulus towards many specific 
corner cases that we did think of. 

There were several issues that were not addressed due 
to resource constraints on the project. The major issue 
was module level testing on portions of the ASIC. 
Specifically, we wanted to test the MAC/PHY block, the 
upstream data path, the downstream data path, and the 
upstream arbiter. Given the environment that was created, 
this could have been easily accomplished. These modules 
each have relatively generic MII-like interfaces that the 
external port transactors and packet generators would 
have hooked up to easily. Because of the portable nature 
of our Specman code, it would have been simple to create 
module level testbenches for these items. 

 We had also planned to use Specman�s function 
coverage feature to improve, or even direct, some of the 
tests we had written. This turned out to be a non-trivial 
task, and time constraints prevented its proper execution. 

Lastly, we wanted to make performance enhancements 
in the testbench. This would have involved recoding 
many of our e functions to improve speed. According to 
one of the profilers that we used, we were seeing more 
than 85% of the CPU time of the run being taken by 
Specman. Again, because of schedule constraints these 
enhancements were not made. 

This last issue is probably the most significant 
drawback to using Specman e as a verification language.  
Specman is great to get a testbench up and running in a 
short amount of time. This benefit has a price, however, 
in that run times can get very long. 

After the project ended, the performance was enhanced 
by utilizing performance tools provided by Verisity to 
target code bottlenecks.  The first target was to rewrite 
complicated keyword events into time-consuming 
methods. This improved performance 2 times over the 
initial coding schemes. Other commands that were 
deemed too inefficient were list commands such as 
pop0(). This actually pops the first item off the list but 
then shifts all the other items up in the list to cover the 
missing location. The gen command was found to be very 
inefficient when used on large structs.  It was found to be 
much more effective to gen the struct once, and then any 
item that required on-the-fly randomizing later was 
gen�ed individually at the time it was actually needed by 
the simulation. 
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9. Conclusion 

 
The project concluded very successfully. It took 6 

months from verification concept to ASIC tape-out. We 
had a basic, useful testbench up and running in 1 month. 
Verification was completed only 1 month behind the 
original, extremely aggressive schedule. We ran more 
than 30,000 jobs via LSF and attained line coverage of 
more than 95% in less than 4 months. Towards the end of 
the project we had a regression of over 100 tests, which 
took approximately 500 CPU hours to complete. It was 
easy to port the environment from the ASIC testbench to 
several different FPGA testbenches. Finally, the most 
important goal was met: the ASIC worked correctly the 
first time. 

The team communicated very well and made quick 
decisions on methodology.  Code was leveraged very 
heavily between team members, and as a result, less time 
was spent trying to reinvent the wheel if someone had 
already developed code for a similar item.  As with any 
language, there seems to be a small subset of the e 
language that gets the job done and thus speeds up the 
learning curve for a new team member to become 
productive.  Specman e was a critical element in the 
timeliness and success of this project. 
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